Департамент внутренней и кадровой политики Белгородской области Областное государственное автономное профессиональное образовательное учреждение «Белгородский индустриальный колледж»

Рассмотрено предметно-цикловой комиссией Протокол заседания № ____ От «31» августа 2020 Председатель цикловой комиссии _____/ Третьяк И.Ю.

Методические указания по выполнению лабораторных работ по учебной дисциплине «Компьютерные сети»

по специальности

09.02.07 Информационные системы и программирование

Квалификация: программист

Разработчик:

Солдатенко М.Н. преподаватель специальных дисциплин БИК

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Учебная дисциплина «Компьютерные сети» является специальной, формирующей базовые умения для получения выпускником профессиональных умений.

Методические указания по выполнению лабораторных работ для студентов специальности 09.02.07 Информационные системы и программирование разработаны в соответствии с рабочей программой учебной дисциплины «Компьютерные сети», соответствуют требованиям Федерального государственного образовательного стандарта по специальностям среднего профессионального образования.

Целью методических указаний по выполнению лабораторных работ является организация и управление работой студентов на лабораторных занятиях при изучении данной дисциплины.

Методические указания по выполнению лабораторных работ содержат тематический план и общие положения и требования к оформлению отчетов. Методические указания к каждой лабораторной работе включают в себя следующие элементы: название темы, цель занятия, ход работы, теоретическую часть, практическую часть (указания по выполнению) и контрольные вопросы.

Методические указания содержат лабораторные работы, которые обеспечивают формирование базовых умений и навыков работы в компьютерных сетях, проектирования, настройки, поиска и устранения неисправностей в компьютерной сети.

В лабораторных работах, приведенных в данных методических указаниях, содержатся как задания с подробными указаниями к выполнению, так и задания без алгоритма работы.

Методические указания предназначены для студентов очной формы обучения специальности 09.02.07 Информационные системы и программирование. По учебному плану по дисциплине «Компьютерные сети» на лабораторные работы студентов отводится 30 часов.

Методические указания направлены на повышение мотивации учащихся к изучению дисциплины «Компьютерные сети», развитие гибкого логического и пространственного мышления учащихся, развитие профессиональных компетенций учащейся молодежи.

Тематический план

№	Наименование лабораторных работ	Кол-во
		часов
1.	Монтаж кабельных систем Ethernet.	2
2.	Монтаж кабельных систем Ethernet. Подключение и настройка локальной сети	2
3.	Монтаж кабельных систем Ethernet. Подключение и настройка локальной сети	2
4.	Проектирование и моделирование сети	2
5.	Проектирование и моделирование сети	2
6.	Проектирование и моделирование сети	2
7.	Создание схемы локальной сети	2
8.	Адресация в ІР-сетях.	2
9.	Подсети и маски	2
10.	Работа с утилитами протокола ТСР/ІР	2
11.	Анализ и диагностика сети	2
12.	Поиск и устранение неполадок с использованием сетевых программных средств	2
13.	Организация почтового ящика.	2
14.	Организация работы с облачными технологиями	2
15.	Организация работы в сети Internet	2
	Всего	30

Лабораторная работа №1 Монтаж кабельных систем Ethernet.

Цель: Изучить основные этапы монтажа кабельных систем Ethernet.

Ход работы:

- 1. Изучить теоретический материал.
- 2. Выполнить задания в соответствии с указаниями.
- з. Оформить отчет по лабораторной работе в соответствии с требованиями (содержание отчета см.ниже).
- 4. Подготовить ответы на контрольные вопросы (устно)

ШТеоретический материал:

Прокладывание локальной сети на основе коаксиального кабеля

В нашей стране наиболее распространены три типа разъемов BNC: «под пайку» отечественного производства марки «СР», предназначенные для использования в сетях с волновым сопротивлением 50 Ом и частотой до 10 ГГц, а также «под обжим» и «под накрутку» импортного производства. Опытные специалисты рекомендуют приобретать разъемы BNC «под обжим», которые не только полностью соответствуют стандарту Ethernet 10Base2, но и крайне просты в монтаже.

Итак, для того чтобы смонтировать на коаксиальном кабеле разъем BNC, необходимо выполнить такую последовательность действий (рис. 1).

- **1.** Ровно обрежьте край коаксиального кабеля таким образом, чтобы на его торце не было зазубрин и скосов. Наденьте острого ножа или скальпеля удалите верхний защитный изоляционный слой коаксиального кабеля на расстояние приблизительно 20-25 мм от края. Проделывайте эту процедуру крайне осторожно, чтобы не повредить расположенную под защитным слоем металлическую оплетку. Аккуратно расплетите оплетку экрана и разведите ее встороны.
- **2** Стараясь не повредить центральный проводник, снимите острым ножом или скальпелем защитный слой проводящей жилы коаксиального кабеля на расстояние примерно 5-8 мм. Зачистите центральный проводник ножом или кусочком наждачной бумаги таким образом, чтобы на нем не осталось следов защитного покрытия. Наденьте на проводящую жилу контакт центральногопровода.

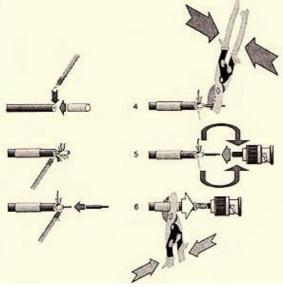


Рис. 1. Порядок монтажа разъема BNC

- 3. Посредством обжимного инструмента или тонких плоскогубцев зажмите цилиндрическую часть контакта центрального провода таким образом, чтобы он надежно зафиксировался на проводящей жиле. При отсутствии обжимного инструмента контакт центрального провода можно припаять к проводящей жиле, но при пайке следует проявлять особую аккуратность, внимательно следя за тем, чтобы соединение былонадежным.
- **4.** Наденьте на кабель разъем до щелчка таким образом, чтобы контакт центрального © солдатенко М.Н.

провода показался из соответствующего отверстия во внутренней части разъема. Равномерно обмотайте ранее расплетенные вами проводники экранирующей оплетки вокруг рифленой контактной площадки заземления. Если волокна экранирующей оплетки окажутся слишком длинными, их можно обрезать на требуемоерасстояние.

5. Надвиньте на контактную площадку заземления с обмотанным вокруг нее экранирующим проводником металлическую муфту разъема и надежно зафиксируйте ее при помощи обжимного инструмента или плоскогубцев. Разъем готов кработе.

Повторите эту процедуру необходимое количество раз, смонтировав разъемы BNC на обоих окончаниях каждого из подготовленных вами отрезков коаксиального кабеля.

Прокладывание локальной сети на основе витой пары

Не важно, хотите ли вы создать маленькую домашнюю сеть или крупный сетевой проект в офисе, вам понадобится сетевой кабель. В большинстве случаев сейчас используют кабель пятой категории (Category 5) UTP - неэкранированная витая пара (UnshieldedTwistedPair), который поддерживает скорость передачи данных до 100 мегабит в секунду 100 Mb/s (Megabitspersecond).

Что вам понадобится:

• **Кабель пятой категории** (также его называют **витая пара**) вы можете приобрести в большинстве компьютерных фирм или компаний, которые занимаются сетями (системных интеграторов), или на радиоэлектронныхрынках.

На проводе лучше не экономить и купить качественный товар, чтобы избежать проблем с сетью из-за некачественного кабеля. Убедитесь при покупке, чтобы цветная кодировка внутренних жил кабеля легко распознавалась. Также обратите внимание на разницу между плотным прямым кабелем и мягким крученым кабелем.

/EIA 568-B.2 CAT.5E 1491M

Жесткий и прямой кабель показывает, что каждая из восьми жил состоит из сплава меди. Этот тип кабеля используется для прокладки в стены и почти не гнется. Это предполагает, что вы не будете менять местоположение кабеля и переносить его. Он имеет лучшую проводимость, чем мягкий крученый кабель, что позволяет его прокладывать на более длинные дистанции.

Второй тип кабеля также состоит из восьми многожильных проводов. Этот кабель очень легко гнется, его используют для небольших участков сети, где важна мобильность.

• **RJ-45** коннектор (8Р8С)- продаются в упаковках по 50 и 100 штук. Можно купить поштучно, но это, как правило, дороже. Обратите внимание на тип коннектора: он должен подходить к вашему типу кабеля. Существуют два типа

коннекторов RJ-45 для плотного кабеля (изображен на рисунке) и мягкого крученого кабеля. Используйте правильный коннектор, чтобы избежать проблем при обжиме и дальнейшем использовании кабеля.

• Обжимной инструмент (кримпер). Пока это самый дорогой компонент в приготовлении нашего кабеля, цена колеблется от 15 до 50\$ в зависимости от качества изготовления и функций. Но инструмент окупается после того как вы приготовите некоторое количество кабеля. Хорошая модель имеет пару ножниц для резки кабеля и лезвия для снятия изоляции, также не лишним является обжим

Какой тип кабеля вам нужен?

Существуют два типа сетевого кабеля, обычно используемые в компьютерных сетях - Cross-over ("нуль хабный") и Straight-through (прямо проходящий, использующий хаб).

коннекторов RJ-11.

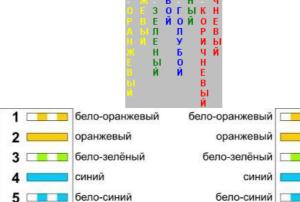
Cross-over("нуль хабный") - используется для соединения двух компьютеров через сетевые карты, напрямую, т.е. не используется ни хаб, ни коммутатор. Таким образом, вы можете подключить только два компьютера одновременно, для подключения трех и более потребуется хаб или некоторый тип коммутатора.

Straight-through(прямо проходящий, использующий хаб) - название этого вида кабеля говорит само за себя - он передаёт сигнал напрямую из одного конца в другой, а именно с 1-го контакта на 1 2-2, 3-3, и т.д. Используется для различных видов соединений (компьютер - хаб, компьютер - DSL/ISDN/кабельный модем, или соединения хаба и коммутатора между собой).

Указания по выполнению работы

[©]Задание №1 <u>Опрессовка прямого кабеля (Straight-through) по стандарту Т568В</u>

І. Нарезка, зачистка и сортировкажил


- 1. Отрежьте необходимый по длине кусок кабеля. Убедитесь, что концы кабеля отрезаныровно.
- 2. Снимите оплетку примерно на один дюйм (2,5 см). Некоторые обжимные инструменты имеют специальные лезвия для снятия оплетки. Вы вставляете кабель до упора (с другой стороны инструмента есть ограничитель) для того чтобы зачистить необходимую длину. Важно при этом не задеть сами жилы кабеля, перерезание одной из восьми жил приведет к неработоспособностиотрезка.

- 3. Расплетите жилы кабеля. Вы заметите, что там есть 4 пары разноцветных проводов.
- 4. Отсортируйте их по цветам. У вас должна получиться вот такая цветная кодировка: голубой бело-голубой оранжевый бело-оранжевый зеленый бело-зеленый коричневый бело-коричневый

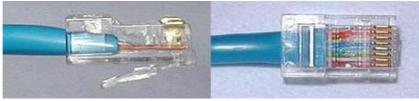
5. Теперь разложите проводки (жилы) слева направо в нужной последовательности. Есть соответствующий стандарт, установленный TelecommunicationsIndustryAssociation (TIA). Он называется EIA/TIA-568Commercial Building Telecommunications Wiring Standard, вы можете подробнее узнать о нем здесь http://www.digital-delivery.com/Standards.htm#s5.

зелёный

бело-коричневый
коричневый

Отсортируйте все жилы, затем убедитесь, чтобы они были прямыми и ровными. Срежьте несколько миллиметров, чтобы все проводки стали одной длины и выходили за изоляцию примерно на полдюйма (1,25 см).

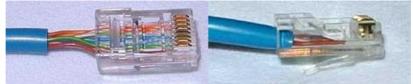
бело-коричневый


зелёный

ІІ.Присоединение RJ-45коннектора

- 1. Держите коннектор пластиковой защелкой отсебя.
- 2. Когда сжимаете кабель для того чтобы вставить в коннектор, проследите, чтобы оболочка не болталась на проводках. Вставляйте отсортированные и выровненные жилы осторожно и постепенно. Вы почувствуете сопротивление, как только жилы начнут попадать в пазы внутриконнектора.
- 3. Посмотрите внимательно, чтобы жилы оставались в нужной последовательности. Иногда при вставке кабеля в коннектор в последний момент жилы могут поменяться местами. Используйте лупу если это необходимо.
- 4. Протолкните жилы до конца коннектора, убедитесь, что все жилы одной длины и касаются прозрачной стенки. Вы должны видеть линию, состоящую из восьми концов жил. Если какая-то жила прошла не до конца, вынимайте кабель, выравнивайте жилы и пробуйтеснова.
- 5. Теперь засуньте оболочку кабеля как можно дальше вконнектор.
- 6. Если все сделано правильно, то кабель должен быть воттакой:

Правильно:



Обратите внимание на то, как изоляционная оболочка должна проходить в коннектор, и как все жилы упираются в конец коннектора.

Ниже приведены два примера как это не должно выглядеть. На примере слева оставлены слишком длинные жилы, из-за чего расстояние от коннектора до оплетки остается незащищенным. Также кабель теряет прочность.

На втором примере жилы срезаны слишком коротко, оплетка входит в коннектор, но длина концов не позволяет создать контакт с коннектором.

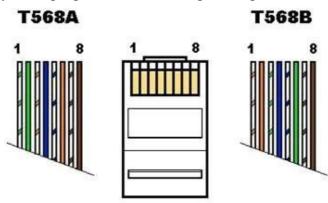
Неправильно:

Перед обжимом последний раз убедитесь что все жилы выровнены и проходят до конца. Теперь вставляйте коннектор в соответствующий зажим на инструменте, зажимайте рукоятки плавно прилагая усилие, но так чтобы не поломать коннектор. После обжима осмотрите коннектор, все контакты должны быть одной длины и утоплены в пластик.

7. Теперь повторите все процедуры со вторым концом кабеля. Используйте те же схемы как на первом коннекторе, тем самым закончив приготовление Straight-through (прямо проходящего, использующего хаб)кабеля

III. Проверка

8. Далее вам необходимо протестировать кабель на работоспособность. Примерно за 20\$ вы можете приобрести специальный тестер. Вставьте оба конца кабеля в разъемы тестера и наблюдайте за лампочками. Если они все горят, у кабеля хороший контакт по каждой жиле и проверка закончена. К слову будет сказано, провод, расплетенный более чем на 2 см, считается не технологичным, хотя и будетработать.


Внешний вид тестера для проверки витых пар RJ-45 модели FA-7012B

9. Результат тестирования кабеля предъявитепреподавателю.

Задание № 2 Монтаж перекрестного кабеля Cross-over

Рассмотрим второй тип кабеля для соединения двух компьютеров между собой напрямую. Отличия этого вида от первого в том, что второй конец кабеля имеет другие цветовые схемы.

Если на одном конце кабеля проводники расположены по стандарту 568A, а на другом - по стандарту 568B, то это будет перекрестный кабель -кроссовер.

1. Выполните обжим одной стороны кабеля, используя раскладку, которая будет идентичена Straight-through кабелю (подробные указания см.выше):

2. Второй конец сделайте по следующейсхеме:

Если вы внимательно посмотрите на два конца Cross-over кабеля, то заметите, что разница всего лишь в том, что зеленая и оранжевая пара поменялись местами, а именно меняются 1-ый с 3-им и 2-ой с 6-ым.

<u>Заметка:</u> Когда вы сделаете Cross-over кабель, пометьте его, чтобы легко отличать от Straight-through кабеля. Наклейте кусочек цветной пленки или отметьте маркером, используйте все, что для вас будет заметно. Иначе этот отрезок может затеряться с другими и вы будете потом долго ломать голову, отчего ваша сеть не работает.

Обжатая таким образом витая пара может вам понадобиться в 2 случаях: для соединения ПК-ПК или ХАБ-ХАБ

Содержание отчета:

- 1. Цель
- 2. Этапы монтажа сети на основе коаксиального кабеля
- 3. Этапы монтажа сети на основе витой пары
- 4. Этапы монтажа сетевой розетки
- 5. Выводы

Также, с отчетом предъявляется кабель и сетевая розетка, монтаж которых успешно выполнен в ходе лабораторной работы.

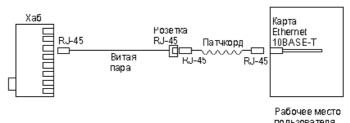
Контрольные вопросы

- 1. Виды кабелей для сетей (коаксиальный, витая пара, оптоволокно). Иххарактеристики
- 2. Устройства соединения BNC, RJ -45. Внешний вид, отличия, назначение.
- 3. Охарактеризуйте EIA/TIA-568 Commercial Building Telecommunications Wiring Standard
- 4. Особенности создания кабеля типаStraight-through
- 5. Особенности создания кабеля типаCross-over

Лабораторная работа №№ 2-3

Монтаж кабельных систем Ethernet. Подключение и настройка локальной сети

Цель: Отработать навыки монтажа сети на основе витой пары, изучить этапы подключения и настройки локальной сети.


Ход работы:

- 1. Изучить теоретический материал.
- 2. Выполнить задания в соответствии с указаниями.
- 3. Оформить отчет по лабораторной работе в соответствии с требованиями (содержание отчета см.ниже).
- 4. Подготовить ответы на контрольные вопросы (устно)

Пеоретический материал:

Задание № 1 <u>Монтаж сетевой розетки категории 5 под разъем RJ45</u>

Стандартная схема подключения ПК к локальной или глобальной сети приведена ниже:

Так же, как и сам кабель, витая пара, сетевые розетки различаются по категориям. В идеале, для профессионального монтажа вам понадобятся: розетка RJ-45 категории 5е для настенного монтажа, устройство для зачистки и обрезки витой пары, устройство для заделки витой пары, 4-парный кабель UTP, категория 5е и маркеры для нанесения обозначений на кабель.

Набор для монтажа розетки (слева инструмент для снятия изоляции, сверху – для обрезки концов проводников)

Все контакты в розетках категории 5 пронумерованы, поэтому никаких проблем с разводкой кабеля возникнуть не должно.

Задание: Выполнить монтаж сетевой розетки в соответствии с описанием(ситуация1): **Ситуация 1. Розетка с одним гнездом на 8 проводов**

Для работы потребуется отвертка с плоским тонким жалом, по толщине, не превышающей диаметр медного проводника витой пары. Также заталкивать провода в щели розетки можно ножом с тонким лезвием, например, канцелярским ножом, у которого лезвие выдвигается.

5 Бело-син 4 Син 7 Бело-кор 8 Кор

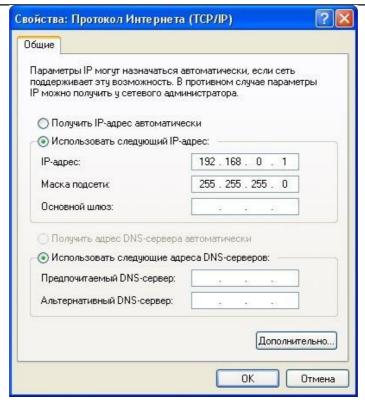
1 Бело-ор 2 Ор 3 Бело-зел 6 Зел

Нумерация контактов в розетке с одним гнездом по стандарту T568B (для стандарта T568A цвета контактов розетки тоже обозначены)

Подготавливается для разделки кабель, снимается на длину не более 3 см его внешняя оболочка. Расплетаются пары на длину не более 13-15 мм. Далее, по схеме цветов, проводники по очереди заводятся в гребенку, заправляются боковой плоскостью лезвия отвертки и затем торцом лезвия заталкиваются до упора.

Ситуация 2. Розетка на 2 гнезда по 8 проводов

Для надежной фиксации проводников в контактах розетки существует специальный инструмент, позволяющий поместить провод на максимальную глубину, хотя, можно обойтись обыкновенным пинцетом и отверткой. Провода перед вбиванием в клеммы зачищать не надо - щели оснащены специальной режущей кромкой, которая сама прекрасно снимает с них изоляцию. Заведите кабель на модуль розетки. Подготавливается для разделки кабель, снимается на длину не более 3 см его внешняя оболочка. Расплетаются пары на длину не более 13-15 мм. Закрепите кабель стяжкой на печатной плате розетки. Обрежьте конец стяжки с помощью кусачек или ножниц. На самой розетке всегда есть схема, какой цвет кабеля, в какой контакт должен приходить. На печатной плате наклеена табличка, на которой прорисованы в цветах варианты Т568В и Т568А разделки проводников витой пары в гребенки


<u>Цветовая маркировка проводов розетки стандарта Т568В это: 1 бело-ор, 2 ор, 3 бело-</u> зел, 4 син, 5 бело-син 6 зел 7 бело кор, 8 кор (для варианта Т568А цвета тоже нарисованы)

После выбора места установки розетки нужно ее закрепить на стене с помощью двух шурупов или приклеить двусторонним скотчем (обычно прилагаются в комплекте с розеткой). Для крепления шурупами нужно снять крышку и печатную плату, чтобы добраться до крепежных отверстий в основании розетки. Чтобы снять крышку, нужно двумя пальцами сдавить ее с боков в месте, близком к основанию и потянуть на себя. Защелки выйдут из зацепления, и крышка легко отойдет в сторону. Далее снимается печатная плата отведением в стороны четырех защелок поуглам.

Задание № 2. <u>Настройка соединения двух ПК в ОС WindowsXP</u>

Чтобы настроить локальную сеть (без хаба) нам понадобятся:

- ΠΚ1
- ПК2
- сетевые карты 2 (сегодня все материнские платы выпускают совстроенной сетевойкартой)
- кроссовер нужнойдлинны
- 2. Изучите видеоматериалы по созданию локальнойсети
- 3. Вставьте один коннектор в порт LAN первого компьютера так, чтобы раздался щелчок. Коннектор на другом конце кабеля вставьте в порт LAN сетевой карты второго компьютера. Физически компьютеры уже соединены всеть.
- 4. На ПК1 щелкните правой кнопкой мыши по значку **Мой компьютер** на рабочем столе и выберите **Свойства**. В открывшемся окне выберите вкладку **Имя компьютера** и нажмите на кнопку **Изменить**. Введите имя компьютера (например, 408-1) и имя рабочей группы, например, 408. Нажмите на кнопку "ОК" в этом и в следующем окне. Затем перезагрузите компьютер, чтобы изменения вступили в силу. То же самое проделайте со вторым компьютером. Рабочая группа на обоих компьютерах должна быть одинаковой 408. По окончании настройки, второй компьютер также нужно перезагрузить.
- 5. На ПК1 проделайте команду Пуск Панель управления и дважды щелкните мышью по пункту Сетевые подключения. Здесь возможен вариант, когда настроенных подключений нет, тогда выбираете Создание нового подключения и далее следуете за Мастером создания подключения. Выполните команду Подключение по локальной сети-Свойства-Протокол Интернета ТСР/ІРи нажмите кнопкуСвойства.
- 6. Отметьте пункт **Использовать следующий IP-адрес**. В поле **IP-адрес** введите адрес вашего компьютера (от 192.168.0.100 до 192.168.0.110). Щелкните мышью по полю **Маска подсети** там появится соответствующая адресу компьютера величина. Нажмите кнопку "ОК" в этом окне и "Закрыть" в следующем. Подождите несколько секунд, пока настройки вступят в силу. Закройте окно Сетевыхподключений.

7. Для проверки связи между ПК откройте меню **Пуск-Выполнить**. В поле команд введите **cmd**и нажмите "ОК". Откроется командный интерпретатор Windows. Мы будем пинговать ПК1 с адресом **192.168.0.100**. Введите **ping 192.168.0.100** и нажмите на клавиатуре Enter. Процесс пошел, мы видим как ПК2 отправляет пакеты, а ПК1 отвечает на них. Значит, связь есть, сеть работает, провод обжатправильно.

```
С:\WINDOWS\system32\cmd.exe

Microsoft Windows XP [Bepcus 5.1.2600]
(C) Kopnopauus Maйкрософт, 1985-2001.

C:\Documents and Settings\PC2\ping 192.168.0.100

Обмен пакетами с 192.168.0.100 по 32 байт:

Ответ от 192.168.0.100: число байт=32 время<inc ITL=128

Статистика Ping для 192.168.0.100:
Пакетов: отправлено = 4, получено = 4, потеряно = 0 <0% потерь>,
Приблизительное время приема-передачи в нс:
Минимальное = Онсек, Максимальное = 0 мсек, Среднее = 0 нсек
```

Содержание отчета:

- 1. Цель
- 2. Монтаж сетевых розеток.
- 3. Настройка соединения междуПК
- 4. Выводы

Контрольные вопросы

- 1. Монтаж сетевых розеток.
- 2. Охарактеризуйте EIA/TIA-568 Commercial Building Telecommunications Wiring Standard
- 3. Создание новогоподключения.
- 4. Как установить имя компьютера и рабочейгруппы

Удалось ли вам обратиться к ресурсам какого-либо из компьютеров сети? Закройте все окна и завершите работу с компьютером

Содержание отчета:

- 1. Цель
- 2. Краткое описание этапов работы по настройке беспроводной сети
- 3. Выводы

Контрольные вопросы

- 1. Преимущества и недостатки сети Wi-Fi
- 2. Какой IP адрес нужно прописать в адресной строке обозревателя, чтобы зайти в WEB интерфейс Wi-Fi poyrepa?
- 3. Какую маску подсети нужно вводить при настройке сетевого протокола TCP/IP?
- 4. В какой раздел нужно зайти при настройке беспроводной сети?
- 5. Что даёт стойкую защиту беспроводного канала?
- 6. Какой вид имеет предпочитаемый DNS-сервер?
- 7. Какой вид имеет альтернативный DNS-сервер?
- 8. Какие действия необходимо выполнить после того как ввели все настройки?
- 9. Как сбросить настройки Wi-Fi роутера?

Лабораторная работа №№ 4-6 Проектирование и моделирование сети

Цель: Рассмотреть программные средства для изучения и моделирования сети. Овладеть навыками проектирования локальной сети с помощью специализированного ПО.

Ход работы:

- 1. Изучить теоретическийматериал.
- 2. Выполнить задания в соответствии суказаниями.
- 3. Оформить отчет по лабораторной работе в соответствии с требованиями (содержание отчета см.ниже).
 - 4. Подготовить ответы на контрольные вопросы(устно)

Пеоретический материал:

Существует ряд программ для изучения, моделирования и проектирования компьютерных сетей. Некоторые из них мы рассмотрим, а также выполним ряд заданий по моделированию и проектированию сетей в ходе лабораторной работы.

В первой части лабораторной работы вы познакомитесь с интерфейсом эмулятора сети Netemul и выполните серию практических задач, промоделировав и настроив работу серии локальных сетей (сеть из двух ПК и коммутатора, сеть из двух ПК и свитча, сеть из двух подсетей и маршрутизатора, сеть из восьми ПК, хаба, коммутатора и роутера).

Во второй части лабораторной работы вы познакомитесь с программой S2 Netest. Эта программа отлична от программы для изучения и моделирования компьютерных сетей NetEmul по своим возможностям. Так, например, в ней нет анимации, зато появилась возможность моделировать беспроводные сети, а также такое понятие, как варианты проектирования сети (оптимальный и не оптимальный). Изначально программа S2 Netest создавалась в учебных целях, для того, чтобы учащиеся могли визуализировать работу компьютерных сетей и для облегчения понимания студентами происходящих в сетях процессов. В S2 Netest можно проверить свои знания в создании локальных сетей из доступных элементов сети. Программа работает только на WindowsXP, а на Windows 7 не запускается.

В третьей части лабораторной работы вы выполните практические задания в программе EDrawNetworkDiagrammer. При проектировании сетей также используется EDrawNetworkDiagrammer – программа создания диаграмм сети с большим количеством примеров и шаблонов.

Основные диаграммы:

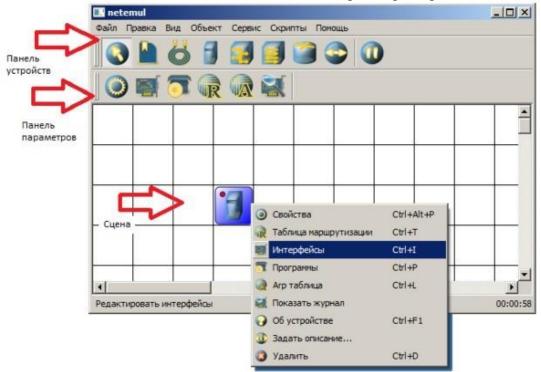
- Топологические схемысети
- Проектирование сетейСisco
- Диаграммы кабельныхсетей
- Диаграммы LAN (локальная компьютернаясеть)
- Диаграммы сетей WAN (глобальнаясеть)

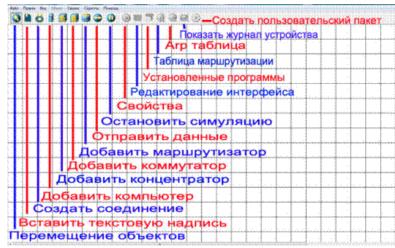
Сетевая диаграмма (граф сети) - графическое отображение работ проекта сети и их взаимосвязей. Отличием от блок-схемы является то, что сетевая диаграмма моделирует только логические зависимости между элементарными работами. Она не отображает входы, процессы и выходы.

Программа имеет как сходство с программой 10 Страйк: Схема Сети, так и принципиальные отличия. Например, в ней можно нарисовать не только изображение сети, но и изображение помещения, где эту сеть планируетсяустановить.

Указания по выполнению работы

Эмулятор сети Netemul


1. Запустите программу Netemul и русифицируйте программу командой **Сервис- Настройки**.



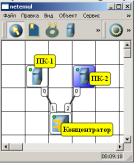
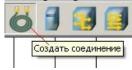
Русификация интерфейса программы

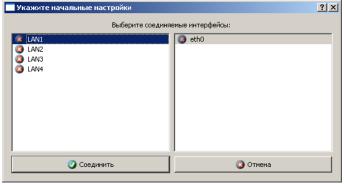
2. Изучите интерфейс программыNetemul.

В главном окне программы все элементы размещаются на рабочей области (на Сцене). На всей свободной области сцены, размеченной сеткой можно ставить устройства, при этом они не должны пересекаться. На Панели устройств размещены все необходимые для построения сети инструменты, а так же кнопка отправки сообщений и Запустить/Остановить. На Панели параметров расположены свойства объектов. Для выделенного объекта появляются только те свойства, которые характерны для него.

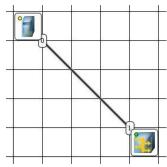
Интерфейс программы Netemul

- **Задание 1.** Построить сеть из двух ПК и концентратора (хаба).
- 1. Для начального знакомства с программой давайте построим простейшую локальную сеть и посмотрим, как она работает. Для этого выполните команду **Файл-Новый** и нарисуйте схему сети как нарисунке:

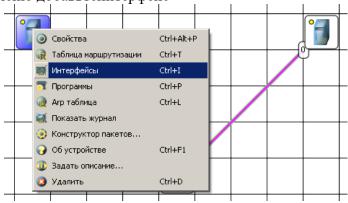

Схема из двух ПК и концентратора

2. После рисования двух ПК и концентратора создайте ихсоединение.

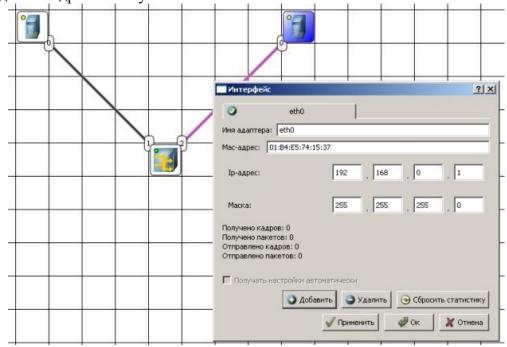


Инструмент создания соединений сетевых устройств

3. В процессе рисования связей между устройствами вам потребуется выбрать соединяемые интерфейсы и нажать на кнопку Соединить:



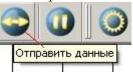
Выбор начальных настроек соединения



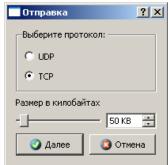
Соединение устройств произведено

4. Теперь настройте интерфейс (сетевую карту) на наших ПК. Используя контекстное меню добавьтеинтерфейс

5. Введите IP адрес и маскусети



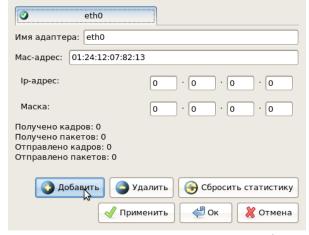
Примечание


Обратите внимание: после того, как вы напишете 192.168.0.1 маска появляется автоматически. После нажатия на кнопки **Применить** и **ОК** — появляется анимация движущихся по сети пакетов информации.

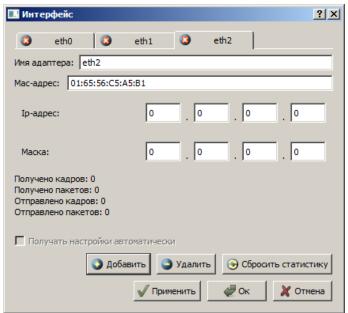
Все - сеть создана и настроена.

6. Для отправки данных по протоколу TCP используйте соответствующуюкнопку. *Кнопка Отправить данные:*

Появится окно Выбор протокола:

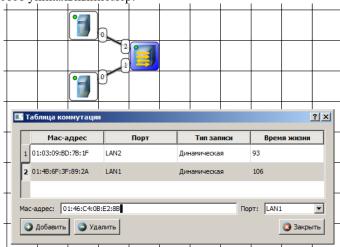


Если вы где-то ошиблись, то появится соответствующее сообщение, а если все верно – то произойдет анимация движущихся по сети пакетов.


Движение пакетов по сети

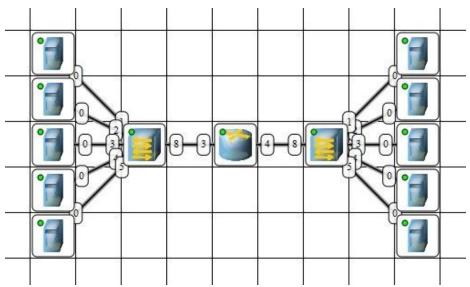
7. По умолчанию каждый ПК имеет одну сетевую карту, но их может быть и несколько. Для того, чтобы добавить для ПК адаптер нужно щелкнуть на нем правой кнопкой мыши и выбрать пункт меню **Интерфейсы**. В результате откроется следующее диалоговоеокно:

Диалоговое окно работы с сетевым интерфейсом ПК


8. Нажмите на кнопку **Добавить**, выберите тип нового адаптера, нажимаем ОК, и у нас есть еще один интерфейс. В качестве примера изображен ПК, имеющий три сетевыхкарты.

В этом ПК установлены адаптеры eth0-eth3

Примечание


Каждый сетевой интерфейс (сетевой адаптер) имеет свой собственный mac-адрес. В программе Netemul в строке "Мас-адрес" можно задать новый адрес, но по умолчанию, при создании интерфейса, ему автоматически присваивается этот уникальныйномер.

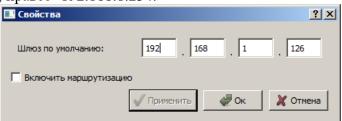
Задание 2. Построить сеть из двух ПК и коммутатора (свитча), изучить таблицу коммутации

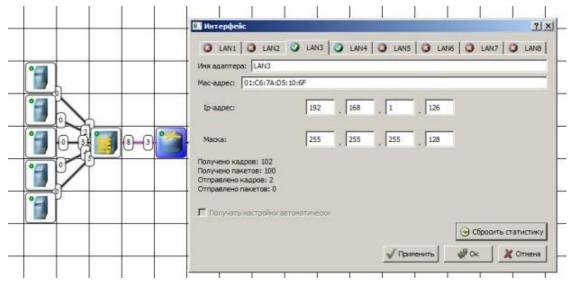
В приведенном выше задании замените хаб на свитч и посмотрите у него таблицу коммутации.

- **Задание 3.** Изучить сеть из двух подсетей и маршрутизатора
- 1 Постройте новую сеть. Разбейте сеть на 2 подсети. Допустим, у нас есть пул адресов сети класса С. Разбейте его на 2 части: 192.168.1.0-192.168.1.127 (слева) и 192.168.1.128-192.168.1.255 (справа) с маской 255.255.255.128.

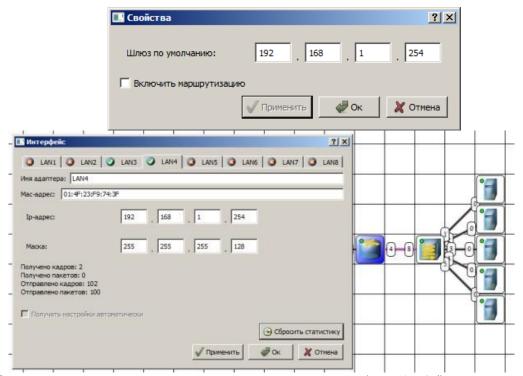
Вариант сети из двух подсетей, соединенных маршрутизатором

Примечание


Обратите внимание на то, что число портов у коммутатора можно задавать. У нас на рисунке коммутатор восьмипортовый.


Настройка компьютеров

- 2 Для настройки ір-адреса интерфейса ПК из меню правой кнопки мыши откройте окно **Интерфейсы** и для левой (первой), подсети выставьте ір-адреса от 192.168.1.1 до 192.168.1.5 и маску подсети255.255.255.128.
- 3. Затем для правой (второй) подсети выставьте ip-адреса от 192.168.1.129 до 192.168.1.133 и маску подсети255.255.255.128.
- 4. После нажатия на кнопку "ОК" или "Применить", можно наблюдать, как индикатор поменял цвет с желтого на зеленый и от нашего устройства, которому сейчас дали адрес, побежал кадр Агр-протокола. Это нужно для того, чтобы выявить, нет ли в нашей сети повторенияадресов.
- 5. В поле "Описание" необходимо задать имя каждому компьютеру. Оно в дальнейшем будет всплывать в подсказке при наведении мыши на устройство, а также при открытии журнала для устройства заголовок будет содержать именно этоописание.


Настройка маршрутизатора

6. Пока послать сообщения из одной такой подсети в другую мы не можем. Необходимо дать IP адреса каждому интерфейсу маршрутизатора, а на конечных узлах установить шлюзы по умолчанию. В подсети левее маршрутизатора у всех узлов должен быть шлюз 192.168.1.126, правее -192.168.1.254.

Настройка шлюза по умолчанию, а также IP и маски для LAN3 (для левой подсети)

Настройка шлюза по умолчанию, а также IP и маски для LAN4 (для правой подсети)

Шлюзы мы задали и теперь у нас полностью рабочая сеть. Давайте рассмотрим свойства ее объектов.

Свойства коммутатора.

7. Откройте таблицу коммутации, используя контекстное меню коммутатора. Сейчас она абсолютно пустая, т.к. не было ни одной передачи данных. Но при этом у нас есть возможность добавить статическую запись, для этого необходимо заполнить все поля соответствующими данными и нажать кнопку"Добавить".

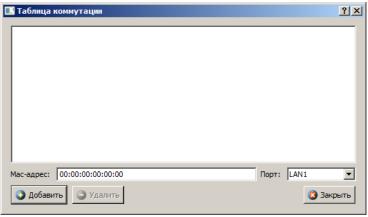


Таблица коммутации коммутатора

Свойства маршрутизатора

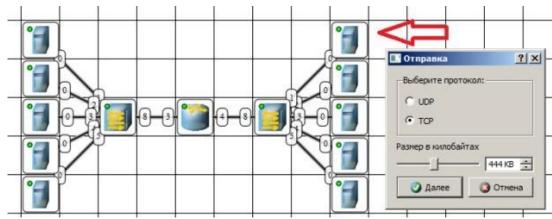
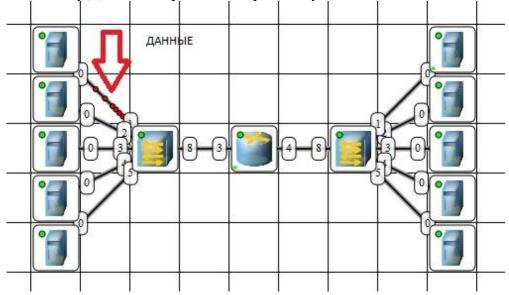
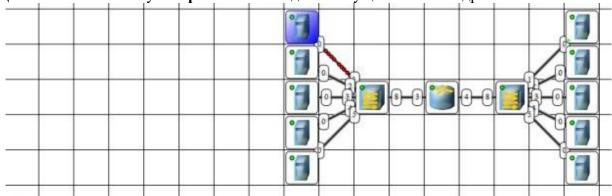

8 В контекстном меню изучите пункты: Таблица маршрутизации, Агр-таблица, Программы. Агр-таблица пуста (по той же причине, что и таблица коммутации), но в нее также можно добавить статические записи. В таблице маршрутизации мы видим 2 записи. Эти записи соответствуют нашим подсетям, о чем говорят надписи в столбце Источник. В качестве источника может быть протокол RIP, установить который можно с помощью пункта Программы. В столбец Шлюз заносится адрес следующего маршрутизатора (или адрес шлюза, если другого маршрутизатора нет). В столбце Интерфейс адрес порта, с которого будем отправлять данные. В эту таблицу тоже можно занести статические записи, а в столбце Источник появится надпись Статическая.

Таблица маршрутизации маршрутизатора


Тестирование сети (Отправка пакетов)

9. Проверьте, насколько правильно функционирует сеть. Для того, чтобы отправить пакеты, выберите на панели инструментов значок
□. При наведении мыши на рабочую область вы увидите оранжевый кружок, это значит, что надо указать от какого компьютера данные будут отправлены. Отправьте данные от компьютера, отмеченного на рисунке краснойстрелкой.


Показан ПК, оправляющий данные

10. Нажмите на кнопку Далее. Теперь надо выбрать получателя.

Показан ПК, получающий данные

11. Далее нажмите кнопку Отправка и наблюдаете бегущие по сети кадры.

По сети идут кадры данных

У каждого устройства в контекстном меню есть пункт "Показать журнал", можно открыть этот журнал и увидеть всю необходимую информацию о пакете, пришедшем (или отправленном), и его содержимое. На этом рисунке журнал открыт для ПК-получателя пакетов.

Журнал устройства показывает, какую информацию содержали кадры данных

Задание 4. Построить сеть из восьми ПК, хаба, коммутатора и роутера. Настроить ее правильную работу

Построить сеть как на рисунке и настройте ее работу.

Две подсети по топологии звезда

Эмулятор сети S2 Netest

В результате работы в программе моделирования сетей S2 Netest будет эмулирована одноранговая локальная сеть, применены инструменты для ее создания в программ, рассмотрены примеры оптимальных и неудачных вариантов проектирования локальных сетей.

В программе S2 Netest вам придется работать со следующим оборудованием.

Сетевой адаптер с функцией Wake-On-LANCompexRE100ATX/WOLRTLTP, скорость 10/100 Мбит в сек, PCI, socketforBootRom. Режим передачи полный и полудуплекс

Сетевой адаптер

В режиме дуплекс устройства могут передавать и принимать информацию одновременно. Полудуплекс - передача данных, когда данные могут передаваться в обоих направлениях, но в каждый момент времени - только в одну сторону.

Следующий тип оборудования - **точка доступа.** Производитель-СОМРЕХ. Разъемы-RJ-45 10/100 Мбит/сек. Максимальная скорость беспроводной передачи данных при соединении между беспроводными узлами: 11/5.5/2/1 Мбит/с. Частота беспроводной связи 2.4 - 2.497 ГГц. Радиус действия 25 - 100 м в помещении, 100 - 250 м на открытом пространстве.

Точка доступа

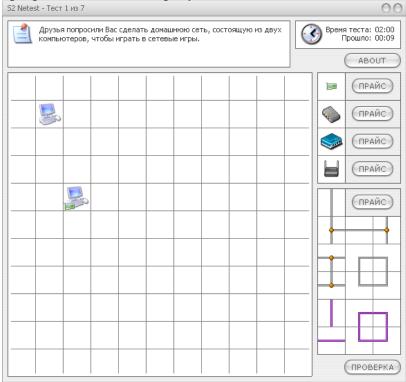
Точка доступа применяется как для подключения группы компьютеров (каждый с беспроводным сетевым адаптером) в самостоятельные сети (режим Ad-hoc), так и для выполнения функции моста между беспроводными и кабельными участками сети (режим Infrastructure). Для режима Ad-hoc максимально возможное количество станций — 256. В Infrastructure-режиме допустимо до 2048 беспроводных узлов.

АсогрЕthernetHub 5 Port (5UTP) - концентратор для небольшой рабочей группы, производитель — Асогр, тип сети Ethernet. Кол-во базовых портов 5. Среда передачи - Ethernet 10baseT, скорость передачи до 100 Мбит/сек, длина сегмента до 100 м. Интерфейсы 4 xEthernet 10baseT • RJ-45 (базовый порт). Ethernet 10baseT • RJ-45 (uplink / базовый порт). Ethernet 10base2 • BNC .

Acorp Ethernet Hub 5 Port (5UTP)

Тrendnet NWay switch 8 port - неуправляемый **коммутатор** с двумя Gigabit Ethernet портами. Интерфейс - стандарт - IEEE 802.3 10Base-T, IEEE 802.3u 100Base-TX, IEEE 802.3ab 1000Base-T, ANSI/IEEE 802.3 NWay auto-negotiation, IEEE 802.3x Flow Control. Кол-во портов 8 x RJ-45 скорость 10/100 Мбит. сек. + 2 x RJ-45 10/100/1000 Мбит/сек. Буфер 256K на устройство. Режим дуплекса - полу- / полный.

Восьмипортовый коммутатор

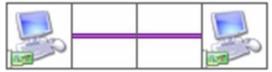

Кабель UTP(unshieldedtwistedpair) 5е - неэкранированная витая пара — <u>рис. 23.5</u>. Кабель категории 5-Е предназначен для передачи сигналов с частотой до 100 МГц. Он используется почти во всех современных приложениях для передачи речи, данных и видео. Минимальный срок службы кабеля UTP 5-Е - 10 лет

Витаяпара

Главное окно программы (Интерфейс)

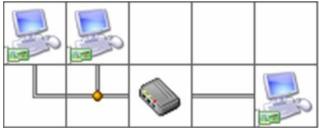
Главное окно программы показано нарисунке:

Главное окно программы S2 Netest

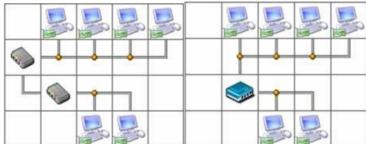

Вверху главного окна программы находится поле задания текущего теста шполе указывающее время, отведенное на тест, и время, прошедшее с начала выполнения текущего теста. Ниже поля задания располагается поле, представляющее собой квадрат, поделенный на 121 часть (поле из клеток 11х11). Справа от игрового поля находятся элементы сети (сетевое оборудование и кабели двух видов) с помощью которых необходимо смонтировать локальную сеть. В самом низу справа расположена кнопка **Проверка**, нажатием на которую можно проверить правильность смонтированной сети.

На поле из клеток могут находиться компьютеры , принтеры и сетевое оборудование. Ваша задача, перетаскивая мышью элементы сети, объединить все

компьютеры в одну локальную сеть. В начале нужно установить в каждый компьютер сетевую карту и . Перетащите мышью сетевую карту на компьютер, и она появится слева от компьютера затем возьмите необходимое количество пятипортовых хабов (учитывая количество портов на каждом хабе и количество соединений). Теперь осталось все устройства соединить кабелем. Если прокладка кабеля затруднена, т.е. имеются препятствия в виде серых клеток , то необходимо воспользоваться беспроводным решением.


Примеры выполнения тестов

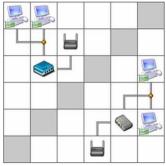
Чтобы объединить два компьютера между собой в сеть дополнительных устройств, кроме сетевых карт, не требуется. Достаточно соединить компьютеры так называемым перекрестным кабелем (его еще называют "перевернутая витая пара").


Прямое соединение двух ПК перекрестным кабелем (красного цвета)

Если же компьютеров три и более, то необходимо использовать хаб. В этом случае используется прямой кабель.

Соединение ПК посредством прямого кабеля (серого цвета)

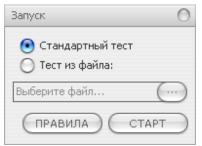
Хаб имеет ограниченное количество портов для подключения компьютеров, поэтому в программе реализована возможность создания сети с использованием нескольких хабов.

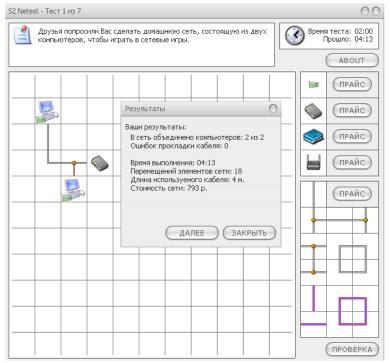


Соединение двух хабов между собой (слева) и решение той же задачи посредством восьмипортового свитча

Между собой хабы соединяются либо **перевернутым кабелем** через обычный порт, либо **прямым кабелем** через **порт Up-Link**(в программе применяется именно такой принцип). Соединение хабов между собой Т-образным кабелем в программе недопустимо!

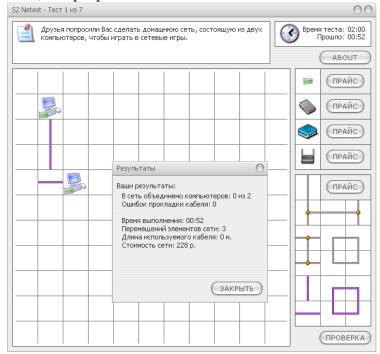
Up-link служит для соединения одного свича (хаба) с другим (в обычный порт) обычным кабелем (не кроссовером). Uplink-порт обычно имеет разъем типа RJ-45. Наличие нескольких высокоскоростных uplink-портов позволяет построить локальную сеть по более сложной топологии. Иначе говоря, Uplink служит для каскадного соединения свичей или хабов, у которых нет автоопределения варианта обжима кабеля.


Если соединению ПК кабелем мешают различные препятствия, то можно организовать беспроводную сеть. Соединение точки беспроводного доступа с хабом Т-образным кабелем недопустимо.

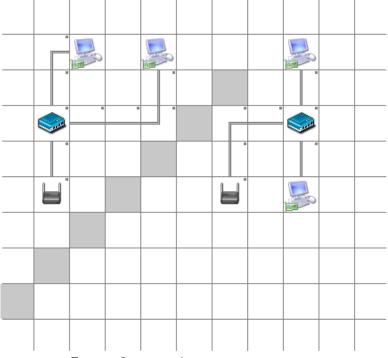

Пример создания беспроводной сети

Сетевые решения оптимальные и неудачные

При старте программы вам предлагается выполнить, так называемый, стандартный тест.

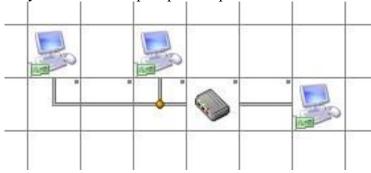


Переключатель программы установлен на запуск стандартного теста Пример правильного решения стандартного теста программы приведен на рисунке ниже:


Неоптимальное (неудачное) решение стандартного теста (793 руб.)

Ошибок в прокладке кабеля нет. Однако, оценку ОТЛИЧНО за такое, в принципе правильное решение получить нельзя. Поскольку существует более оптимальное решение этой задачи. Вариант в 793 руб. можно заменить более экономичным вариантом в 228 руб. с использованием не прямого, а перекрестного кабеля.

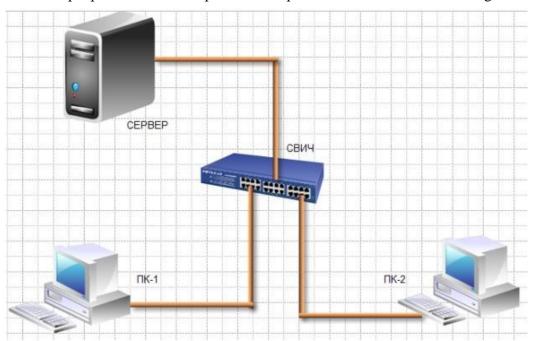
Оптимальное решение стандартного теста (228 руб.)


Задание 1. Постройте следующую схему и кнопкой Проверка убедитесь в том, что она работает верно.

Схемы беспроводной локальной сети

Задание 2. Проверка оптимальности построения сети

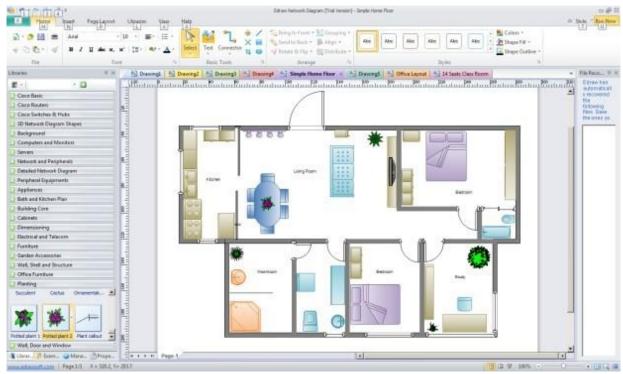
Постройте сеть следующего вида. Проверьте ее работоспособность.

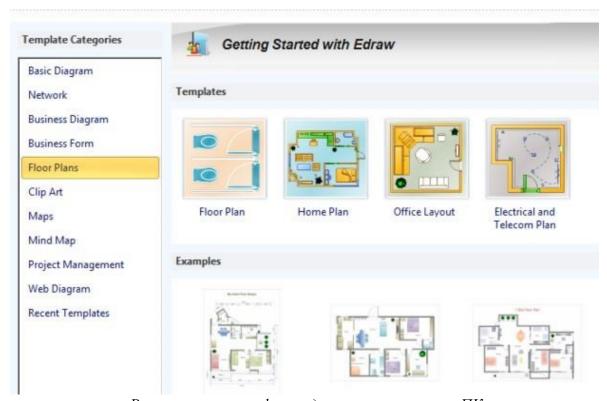


Сеть по топологии Звезда

Теперь хаб замените на свитч. Сеть также будет работать. Определить какое из этих двух решений будет более оптимальным и почему.

Программа построения диаграмм сети EDrawNetworkDiagrammer

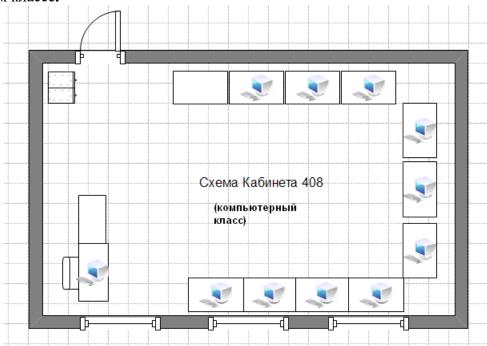

Знакомство с программой для построения диаграмм сети EDrawNetworkDiagrammer.


Пример элементарной схемы сети, выполненной в EDrawNetworkDiagrammer

Совет

Для выбора компьютеров и мониторов из библиотеки (Libraries) нужно выбрать команду **Network-ComputersandMonitors**, а для выбора кабелей — команду **NetworkandPeripherals**.

Изображение офисного помещения, нарисованного в EDrawNetworkDiagrammer В этом случае из библиотеки нужно выбрать вариант **FloorPlans**.


Различные схемы офисов, для размещения в них ПК

Задание 1. В программе EDrawNetworkDiagrammer повторите схему, показанную ниже на рисунке. Поясните, что за устройства присутствуют в данной сети и как они работают.

Схема сети небольшого офиса

Задание 2. Повторите рисунок, изображающий расположение компьютеров в компьютерном классе.

Расположение компьютеров в компьютерном классе

Содержание отчета:

- 1. Цель
- 2. Создание сети, состоящей из двух подсетей и маршрутизатора с помощью эмулятора сетиNetemul.
- 3. Построение беспроводной локальной сети в программе S2Netest
- 4. Моделирование компьютерной сети класса в программе EDrawNetworkDiagrammer
- 5. Выводы

Контрольные вопросы

- 1. Понятие компьютерной сети, классификациясетей.
- 2. Программы для изучения, моделирования и проектирования компьютерных сетей. Особенности иотличия.
- 3. Интерфейс программыNetemul.
- 4. Интерфейс программы S2Netest.
- 5. Дать характеристику следующимустройствам:

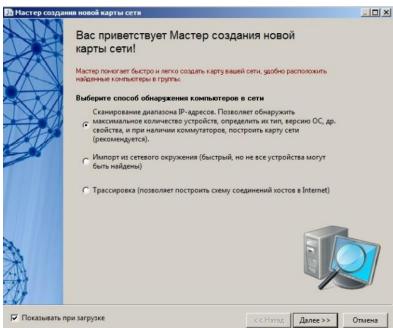
6. Интерфейс программы EDraw NetworkDiagrammer.

Лабораторная работа № 7 Создание схемы локальной сети

Цель: отработать навыки создания схемы локальной сети.

Ход работы:

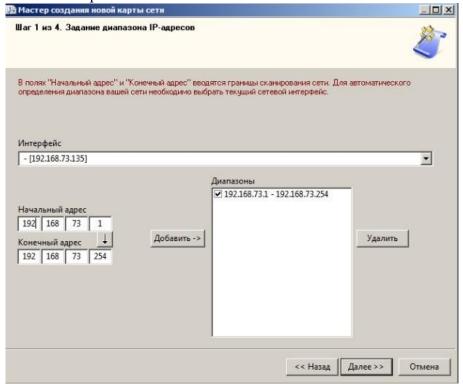
- 1. Изучить теоретическийматериал.
- 2. Выполнить задания в соответствии суказаниями.
- 3. Оформить отчет по лабораторной работе в соответствии с требованиями (содержание отчета см.ниже).
 - 4. Подготовить ответы на контрольные вопросы(устно)
 - **Пеоретический** материал:


10-Страйк: Схема Сети - программа создания схем локальных сетей, позволяющая обнаружить сетевые устройства и поместить их на карту-схему. Сайт разработчиков - http://www.10-strike.com/rus/download.shtml. Программа содержит библиотеку значков сетевых устройств, что позволяет в ней рисовать схемы для курсовика или диплома. Если в сети поддерживается протокол SNMP, то программа нарисует связи между устройствами автоматически. Иначе говоря, в этой программе можно создать схему локальной сети в ручном или автоматическом режиме. Программа сканирует топологию сети и все сетевые устройства отображает графически. Остаётся только отредактировать схему сети – дорисовать недостающие связи, нанести надписи, применить желаемый цвет длярисунков.

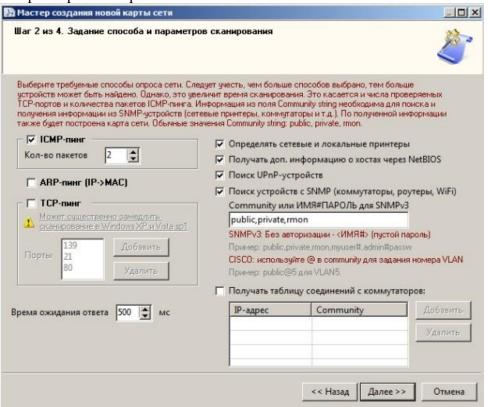
Указания по выполнению работы

1.Запустить программу 10-Страйк: Схема Сети

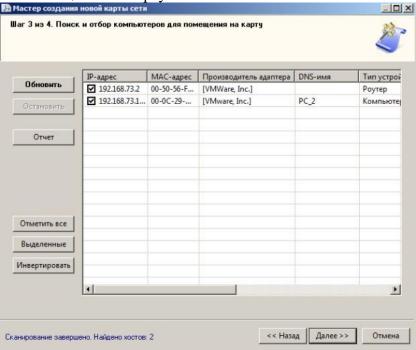
При первом запуске автоматически запускается **Мастер создания новой карты сети**. В процессе работы Мастера создания карты сети выберите нужный вариант поиска компьютеров:


- Сканирование диапазона IP-адресов. Если у вас большая коммутируемая сеть, то рекомендуется использовать этот способ сканирования. Но он довольно продолжителен повремени.
- Импорт из сетевого окружения. Данный способ работает несколько быстрее, причем программа автоматически разобьет найденные компьютеры по их рабочим группам или доменам.

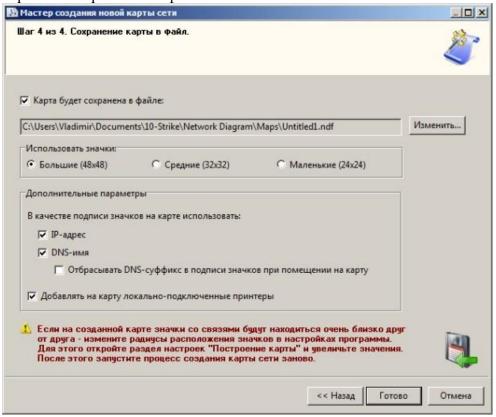
Запуск Мастера создания новой карты сети


Нажмите на кнопку Далее.

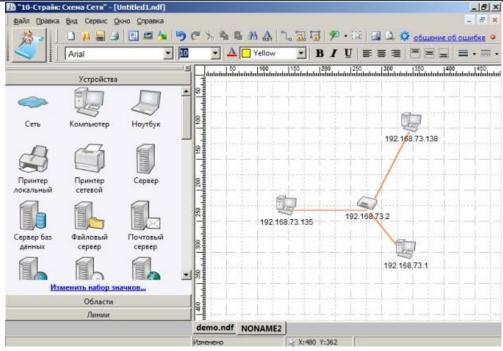
2.Задайте диапазон сканирования локальной сети


Нажмите на кнопку Далее.

3. Задайте параметры сканирования сети

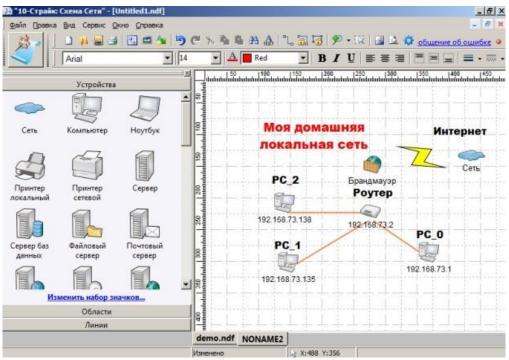

Нажмите на кнопку Далее.

4.Отбор ПК для их помещения на карту сети



Нажмите на кнопку Далее.

5.Окно сохранения карты сети в файл

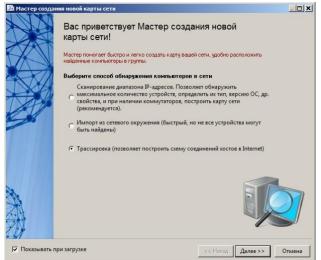


Нажмите на кнопку Готово.

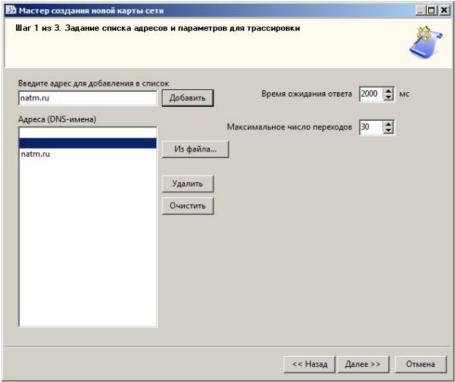
Карта сети построена

Теперь ее можно отредактировать.

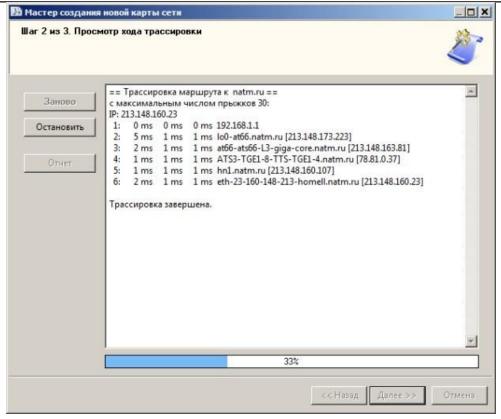
Карта сети отредактирована

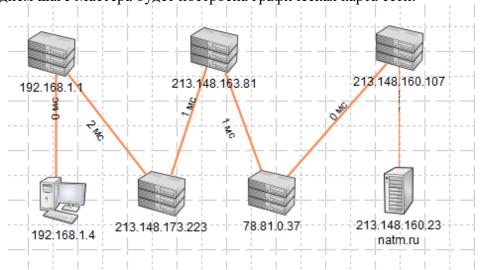

Примечание

Интернет заполнен большим количеством опасных программ, активно желающих проникнуть в систему вашего компьютера. Для защиты операционной системы от подобных угроз и был создан сетевой экран (**брандмауэр** или файрвол). Главным назначением этой программы, которая запрещает или ограничивает им доступ в Интернет, является управление сетевой активностью приложений. Многие программные продукты сразу после установки на ПК самостоятельно, без вашего ведома, начинают посещать Интернет и обновляться. Если

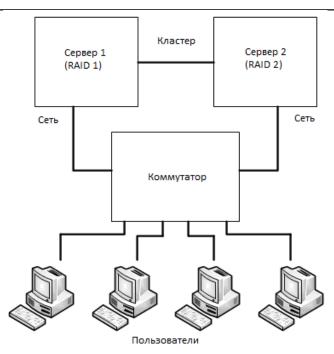

будет использоваться брандмауэр, то подобная активность точно будет замечена пользователем и будет им контролироваться.

Трассировка


В программе можно выполнить трассировку, мы выполним трассировку провайдера Интернет.


- 1.На первом шаге Мастера выберите переключательТрассировка
- 2. Далее, например, укажите провайдера. Понятно, что это не обязательно доменное имя сервера может быть любым.

Провайдера добавьте в программу кнопкой Добавить После нажатия **Далее:**.



Все нормально, интервал ожидания нигде не превышен На последнем шаге Мастера будет построена графическая карта сети.

Карта сети от ПК пользователя до его провайдера Интернет. На карте мы видим пять кластеров.

Кластер — группа компьютеров, объединённых высокоскоростными каналами связи и представляющая с точки зрения пользователя единый аппаратный ресурс. Кластеры часто создают для создания отказоустойчивой системы. Например, изначально работает один сервер (RAID 1), если случается программный или аппаратный сбой, то в дело включается второй сервер (RAID 2), а специальная служба, установленная на этих серверах, быстро возобновляет работу пользователя послесбоя.

Рисунок, поясняющий термин "Кластер"

Задание. Нарисовать в программе 10 Страйк Схема Сети схему сети предприятия как на рисунке. Поясните, что за устройства присутствуют в данной сети и как они работают.

В программе 10 Страйк схема сети есть библиотека сетевых устройств, областей и линий. Примените их для того, чтобы повторить рисунок ниже.

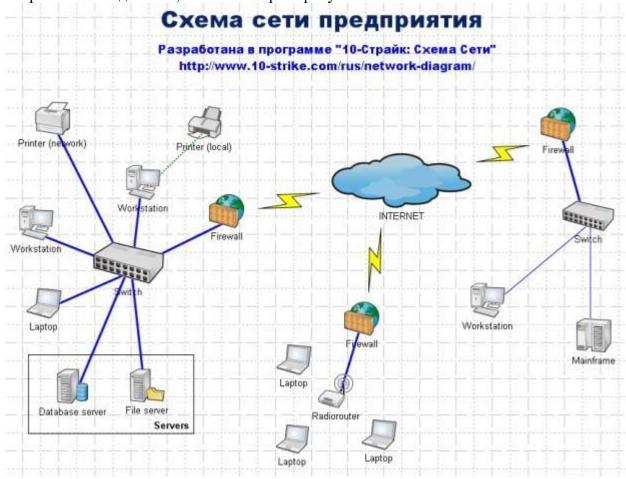
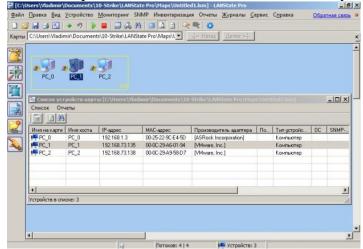



Схема сети предприятия

Примечание

По своим возможностям программа 10-Страйк: Схема Сети похожа на программу LanStatePro, предназначенную для администрирования и мониторинга компьютерной сети. LanStatePro как и программа 10-Страйк: Схема Сети может создать схему сети автоматически

В рабочей группе 110 программа LanStatePro нашла три ПК

Содержание отчета:

- 1. Цель
- 2. Отразить ход работы
- 3. Выводы

Контрольные вопросы

- 1. Опишите интерфейс программы 10-Страйк: СхемаСети.
- 2. Перечислите задачи, которые решает среда 10-Страйк: СхемаСети.
- 3. Дать определения понятиям: кластер, трассировка, брандмауэр

Лабораторная работа №8 Адресация в IP сетях

Цель: Изучить принципы адресации в IP-сетях, протоколы преобразования форматов IP-адресов, методы определения IP-адреса

Ход работы:

- 1. Изучить теоретический материал.
- 2. Выполнить задания в соответствии суказаниями.
- 3. Оформить отчет по лабораторной работе в соответствии с требованиями (содержание отчета см.ниже).
 - 4. Подготовить ответы на контрольные вопросы (устно)

□Теоретический материал:

Правила межсетевой передачи информации были разработаны еще в начале 1970-х годов в рамках проекта американского проекта ARPANET. В 1974 году они были зафиксированы в протоколах заседаний межсетевой рабочей группы, работавшей под руководством Винтона Серфа (VintonCerf). Вскоре был опубликован документ, получивший название протокол TCP/IP (TransmissionControlProtocolInternetProtocol). Этот документ и стал основным стандартом Интернета. Предложенные в нем принципы таковы:

Каждый компьютер в сети (или на сетевом жаргоне хост (host) - узел сети, не являющийся маршрутизатором, т.е. не передающий информацию из одной сети в другую) имеет уникальный двоичный 4-х байтовый адрес, идентифицирующий его в Интернет.

IP-адрес имеет длину 4 байта и обычно записывается в виде четырех чисел, представляющих значения каждого байта в десятичной форме и разделенных точками, например, 128.10.2.30 - традиционная десятичная форма представления адреса, а 10000000 00001010 00000010 00011110 - двоичная форма представления этого же адреса.

Протокол IP (InternetProtocol) используется как в глобальных распределенных системах, например в сети Интернет, так и в локальных сетях.

Классы IP-адресов

Адрес состоит из двух логических частей - номера сети и номера узла в сети. Какая часть адреса относится к номеру сети, а какая - к номеру узла, определяется значениями первых бит адреса. Значения этих бит являются также признаками того, к какому классу относится тот или иной IP-адрес.

На рисунке показана структура ІР-адреса разных классов.

Если адрес начинается с 0 (в двоичной системе счисления), то сеть относят к классу A и номер сети занимает один байт, остальные 3 байта интерпретируются как номер узла в сети. Сети класса A имеют номера в диапазоне от 1 до 126. (Номер 0 не используется, а номер 127

зарезервирован для специальных целей, о чем будет сказано ниже.) Сетей класса A немного, зато количество узлов в них может достигать 2^{24} , то есть $16\,777\,216$ узлов.

Если первые два бита адреса равны 10, то сеть относится к классу B. B сетях класса B под номер сети и под номер узла отводится по 16 бит, то есть по 2 байта. Таким образом, сеть класса B является сетью средних размеров с максимальным числом узлов 2^{16} , что составляет 65 536 узлов.

Если адрес начинается с последовательности 110, то это сеть класса С. В этом случае под номер сети отводится 24 бита, а под номер узла - 8 бит. Сети этого класса наиболее распространены, число узлов в них ограничено 28, то есть 256 узлами.

Если адрес начинается с последовательности 1110, то он является адресом класса D и обозначает особый, групповой адрес - multicast. Если в пакете в качестве адреса назначения указан адрес класса D, то такой пакет должны получить все узлы, которым присвоен данный адрес.

Если адрес начинается с последовательности 11110, то это значит, что данный адрес относится к классу Е, Адреса этого класса зарезервированы для будущих применений.

В табл. 1 приведены диапазоны номеров сетей и максимальное число узлов, соответствующих каждому классу сетей.

Таблица 1. Характеристики адресов разного класса

Класс	Первые биты	Наименьший номер сети	Наибольший номер сети	Максимальное число узлов в сети	
A	0	1.0.0.0	126.0.0.0	224	
В	10	128.0.0.0	191.255.0.0	216	
c	110	192.0.1.0	223.255.255.0	28	
D	1110	224.0.0.0	239.255.255.255	Multicast	
E	11110	240.0.0.0	247.255.255.255	Зарезервирован	

Большие сети получают адреса класса А, средние - класса В, а маленькие класса С.

Особые ІР-адреса

В протоколе IP существует несколько соглашений об особой интерпретации IP-адресов. Таблипа 2. Значение выделенных IP-адресов

	- 1
ІР-адрес	Значение
0.0.0.0	Данный компьютер
Номер сети.0.0.0	Данная IP-сеть
0.0.0.номерхоста	Конкретный компьютер в данной локальной IP-сети
1.1.1.1	Все компьютеры в данной локальной ІР-сети
Номер сети.1.1.1	Все компьютеры в указанной ІР-сети

При адресации необходимо учитывать те ограничения, которые вносятся особым назначением некоторых IP-адресов. Так, ни номер сети, ни номер узла не может состоять только из одних двоичных единиц или только из одних двоичных нулей. Отсюда следует, что максимальное количество узлов, приведенное в таблице для сетей каждого класса, на практике должно быть уменьшено на 2. Например, в сетях класса С под номер узла отводится 8 бит, которые позволяют задавать 256 номеров: от 0 до 255. Однако на практике максимальное число узлов в сети класса С не может превышать 254, так как адреса 0 и 255 имеют специальное назначение. Из этих же соображений следует, что конечный узел не может иметь адрес типа 98.255.255.255, поскольку номер узла в этом адресе класса А состоит из одних двоичных единиц.

Особый смысл имеет IP-адрес, первый октет которого равен 127. Он используется для тестирования программ и взаимодействия процессов в пределах одной машины. Когда программа посылает данные по IP-адресу 127.0.0.1, то образуется как бы «петля». Данные не передаются по сети, а возвращаются модулям верхнего уровня как только что принятые. Поэтому в IP-сети запрещается присваивать машинам IP-адреса, начинающиеся со 127. Этот адрес имеет название loopback. Можно отнести адрес 127.0.0.0 ко внутренней сети модуля маршрутизации узла, а адрес 127.0.0.1 - к адресу этого модуля на внутренней сети. На самом деле любой адрес сети 127.0.0.0 служит для обозначения своего модуля маршрутизации, а не только 127.0.0.1, например 127.0.0.3.

Уже упоминавшаяся форма группового IP-адреса - multicast - означает, что данный пакет должен быть доставлен сразу нескольким узлам, которые образуют группу с номером, указанным в поле адреса. Узлы сами идентифицируют себя, то есть определяют, к какой из групп они относятся. Один и тот же узел может входить в несколько групп. Члены какой-либо группы multicast не обязательно должны принадлежать одной сети. В общем случае они могут распределяться по совершенно различным сетям, находящимся друг от друга на произвольном количестве хопов. Групповой адрес не делится на поля номера сети и узла и обрабатывается маршрутизатором особымобразом.

Чтобы маршрутизаторы могли автоматически распространять пакеты с адресом multicast по составной сети, необходимо использовать в конечных маршрутизаторах модифицированные протоколы обмена маршрутной информацией, такие как, например, MOSPF (MulticastOSPF, аналог OSPF).

Групповая адресация предназначена для экономичного распространения в Internet или большой корпоративной сети аудио- или видеопрограмм, предназначенных сразу большой аудитории слушателей или зрителей. Если такие средства найдут широкое применение (сейчас они представляют в основном небольшие экспериментальные островки в общем Internet), то Internet сможет создать серьезную конкуренцию радио ителевидению.

Порядок распределения ІР-адресов

Номера сетей назначаются либо централизованно, если сеть является частью Internet, либо произвольно, если сеть работает автономно. Номера узлов и в том и в другом случае администратор волен назначать по своему усмотрению, не выходя, разумеется, из разрешенного для этого класса сети диапазона.

Координирующую роль в централизованном распределении IP-адресов до некоторого времени играла организация InterNIC, однако с ростом сети задача распределения адресов стала слишком сложной, и InterNIC делегировала часть своих функций другим организациям и крупным поставщикам услуг Internet.

Уже сравнительно давно наблюдается дефицит IP-адресов. Очень трудно получить адрес класса В и практически невозможно стать обладателем адреса класса А. При этом надо отметить, что дефицит обусловлен не только ростом сетей, но и тем, что имеющееся множество IP-адресов используется нерационально.

Для смягчения проблемы дефицита адресов разработчики стека TCP/IP предлагают разные подходы. Принципиальным решением является переход на новую версию IPv6, в которой резко расширяется адресное пространство за счет использования 16-байтных адресов. Однако и текущая версия IPv4 поддерживает некоторые технологии, направленные на более экономное расходование IP-адресов. Одной из таких технологий является технология масок и ее развитие - технология бесклассовой междоменной маршрутизации (ClasslessInker-DomainRouting, CIDR). Технология CIDR отказывается от традиционной концепции разделения адресов протокола IP на классы, что позволяет получать в пользование столько адресов, сколько реально необходимо.

ІР-адресов Централизованным распределением В локальных сетях занимается государственная организация — Стенфордский международный научно- исследовательский институт (StanfordResearchInstitute, SRIInternational), расположенный в самом сердце Силиконовой долины — городе Мэнло-Парк, штат Калифорния, США. Услуга по присвоению новой локальной сети ІР-адресов бесплатная, и занимает она приблизительно неделю. Связаться с данной организацией можно по адресу SRIInternational, RoomEJ210, 333 RavenswoodAvenue, MenioPark, California 94025, USA, или по адресу электронной почты, который можно найти на сайте http://www.sri.com. Однако большинство администраторов небольших локальных насчитывающих 5-10 компьютеров, назначают ІР-адреса подключенным к сети машинам самостоятельно, исходя из описанных выше правил адресации в ІР-сетях. Такой подход вполне имеет право на жизнь, но вместе с тем произвольное назначение ІР-адресов может стать проблемой, если в будущем такая сеть будет соединена с другими локальными сетями или в ней будет организовано прямое подключение к Интернету. В данном случае случайное совпадение

© Солдатенко М.Н.

нескольких IP-адресов может привести к весьма неприятным последствиям, например к ошибкам в маршрутизации передаваемых по сети данных или отказу в работе всей сети вцелом.

Небольшие локальные сети, насчитывающие ограниченное количество компьютеров, должны запрашивать для регистрации адреса класса С. При этом каждой из таких сетей назначаются только два первых октета IP-адреса, например 197.112.X.X, на практике это означает, что администратор данной сети может создавать подсети и назначать номера узлов в рамках каждой из них произвольно, исходя из собственных потребностей.

Большие локальные сети, использующие в качестве базового межсетевой протокол IP, нередко применяют чрезвычайно удобный способ структуризации всей сетевой системы путем разделения общей IP-сети на подсети. Например, если вся сеть предприятия состоит из ряда объединенных вместе локальных сетей Ethernet, то в ней может быть выделено несколько структурных составляющих, то есть подсетей, отличающихся значением третьего октета IP-адреса. Как правило, в качестве каждой из подсетей используется физическая сеть какого-либо отдела фирмы, скажем, сеть Ethernet, объединяющая все компьютеры бухгалтерии. Такой подход, во-первых, позволяет излишне не расходовать IP-адреса, а во-вторых, предоставляет определенные удобства с точки зрения администрирования: например, администратор может открыть доступ к Интернету только для одной из вверенных ему подсетей или на время отключить одну из подсетей от локальной сети предприятия. Кроме того, в случае если сетевой администратор решит, что третий октет IP-адреса описывает номер подсети, а четвертый — номер узла в ней, то такая информация записывается в локальных таблицах маршрутизации сети вашего предприятия и не видна извне. Другими словами, данный подход обеспечивает большую безопасность.

В локальных сетях, работающих под управлением межсетевого протокола IP, помимо обозначения IP-адресов входящих в сеть узлов принято также символьное обозначение компьютеров: например, компьютер с адресом 192.112.85.7 может иметь сетевое имя localhost. Таблица соответствий IP- адресов символьным именам узлов содержится в специальном файле hosts, хранящемся в одной из системных папок; в частности, в операционной системе MicrosoftWindowsXP этот файл можно отыскать в папке AMCK:\Windows\system32\drivers\etc\. Синтаксис записи таблицы сопоставлений имен узлов локальной сети IP-адресам достаточно прост: каждый элемент таблицы должен быть расположен в новой строке, IP-адрес располагается в первом столбце, а за ним следует имя компьютера, при этом IP-адрес и имя должны быть разделены как минимум одним пробелом. Каждая из строк таблицы может включать произвольный комментарий, обозначаемый символом #. Пример файла hosts приведенниже:

192.112.85	localhost	# этот компьютер
192.112.85	server	# сервер сети
192.112.85	director	# компьютер
192.112.85	admin	# компьютер

Как правило, файл hosts создается для какой-либо конкретной локальной сети, и его копия хранится на каждом из подключенных к ней компьютеров. В случае, если один из узлов сети имеет несколько IP-адресов, то в таблице соответствий обычно указывается лишь один из них, вне зависимости от того, какой из адресов реально используется. При получении из сети IP- пакета, предназначенного для данного компьютера, протокол IP сверится с таблицей маршрутизации и на основе анализа заголовка IP-пакета автоматически опознает любой из IP-адресов, назначенных данномуузлу.

Помимо отдельных узлов сети собственные символьные имена могут иметь также входящие в локальную сеть подсети. Таблица соответствий IP-адресов именам подсетей содержится в файле **networks**, хранящемся в той же папке, что и файл **hosts**. Синтаксис записи данной таблицы сопоставлений несколько отличается от предыдущего, и в общем виде выглядит следующимобразом:

<ceтевое имя designtimesp=10929><номер сети designtimesp=10930> [псевдонимы...] [#<комментарий designtimesp=10931>]

© Солдатенко М.Н.

где сетевое имя — имя, назначенное каждой подсети, номер сети — часть IP-адреса подсети (за исключением номеров более мелких подсетей, входящих в данную подсеть, и номеров узлов), псевдонимы — необязательный параметр, указывающий на возможные синонимы имен подсетей: они используется в случае, если какая-либо подсеть имеет несколько различных символьных имен; и, наконец, комментарий — произвольный комментарий, поясняющий смысл каждой записи. Пример файла **networks** приведенниже:

loopback .7	127	
marketing	192.112.85	# отдел маркетинга
buhgaltena	192.112.81	# бухгалтерия
workshop	192.112.80	# сеть производственного цеха workgroup 192.112.10 localnetwork # основная рабочая группа

Обратите внимание на то обстоятельство, что адреса, начинающиеся на 127, являются зарезервированными для протокола IP, а подсеть с адресом 192.112.10 в нашем примере имеет два символьных имени, используемых совместно.

Файлы **hosts**и **networks**не оказывают непосредственного влияния на принципиальный механизм работы протокола IP и используются в основном прикладными программами, однако они существенно облегчают настройку и администрирование локальнойсети.

Адресация сетевых устройств и разрешение адресов.

В сети Интернет используются две схемы адресации: система доменных имен и IP-адресация. Доменное имя состоит из собственного имени компьютера (сетевого устройства) и имени домена. Доменные имена отражают иерархическую структуру сети. Рассмотрим пример: "dnvrng-kscyng.abilene.ucaid.edu". Этот компьютер принадлежит домену верхнего уровня "edu" (домен для образовательных учреждений США). Домен второго уровня называется "ucaid.edu". Домен третьего уровня — "abilene.ucaid.edu" (это глобальная сеть исследовательских и образовательных учреждений). Из собственного имени ("dnvrng-kscyng") можно сделать вывод, что этот компьютер находится на магистрали, соединяющей Канзас-Сити сДенвером.

В локальных сетях Ethernet используется аппаратная адресация (МАС-адреса). Такие адреса присваиваются сетевым картам производителем, поэтому они не могут отражать структуру сети (фактически, это номер устройства, присваиваемый в порядке схода с конвейера). Пример МАС-адреса: 00:30:48:51:e1:0d.

Наличие разных схем адресации требует возможности преобразования между ними. Такое преобразование называется разрешением имен (resolving - преобразование доменного имени в IP-адрес, resolution - преобразование IP-адреса в MAC-адрес). Преобразованием MAC- адресов в IP-адреса занимается протокол ARP (AddressResolutionProtocol). Этот протокол используется на канальном уровне для определения получателя Ethernet-кадра по известному IP-адресу. Он хранит специальную таблицу (агр-кэш), содержащую перечень аппаратных адресов локального сегмента сети и соответствующих им IP-адресов. Эту таблицу можно посмотреть, выполнив команду агр -а

Преобразованием между IP-адресами и доменными именами занимается служба DNS (DomainNameSystem). Она представляет собой распределенную базу данных, части которой находятся на серверах имен (nameservers). Чтобы осуществить преобразование, локальный компьютер должен обратиться к ближайшему серверу имен (он называется локальным сервером имен), который может ответить самостоятельно, а может перенаправить запрос корневому серверу имен. Корневые сервера (их всего около двух десятков) перенаправляют запросы на полномочные сервера имен (т.е. те сервера, на которых зарегистрировано доменное имя или его части). От конечного пользователя этот процесс запросов скрыт.

Получение дополнительной информации об адресах.

При регистрации доменных имен (особенно при регистрации имен второго уровня) необходимо указывать информацию о владельцах, ответственных лицах, почтовых адресах, телефонах и пр. Получить доступ к этой информации можно с помощью сервиса whois. Этот сервис представляет собой большое количество whois-серверов, разбросанных про всему миру. Поэтому для получения нужной информации требуется сначала узнать соответствующий whois-

© Солдатенко М.Н.

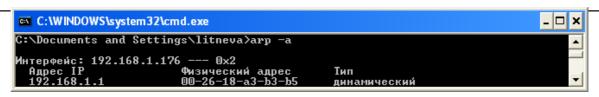
сервер, а эта задача может оказаться неразрешимой. Проблемы здесь могут возникнуть с национальными доменами. Кроме того в базах данных whois-серверов чаще всего содержатся сведения только о доменах второго уровня.

Предположим, что нужно получить информацию о компьютере sweet-rtr.stanford.edu. Его IP-адрес: 171.64.1.166. Выполнив команду whoisstanford.edu можно многое узнать о домене stanford.edu. Попытка выполнить запрос по полному имени ни к чему не приведет. Командой whois можно также воспользоваться, для определения владельцев диапазона IP-адресов: whois 150.214.9.142. Аналогичные сведения можно получить на странице www.nic.ru/whois. В некоторых случаях может помочь сайт http://www.whois-service.ru/ илиhttp://www.uwhois.com/.

Задание 1. Запишите двоичный IP-адрес 111111101011111101001000000111 в стандартном формате.

Задание 2. Подсчитайте, сколько всего компьютеров может быть в Интернете. Расчет с необходимыми пояснениями запишите в отчет.

Протокол TCP/IP является открытым, с его официальным описанием (RFC-791, RFC-793) может познакомится в Интернет любой желающий. Неудивительно, что существуют программные реализации этого протокола практически для любой операционной системы. Например, MicrosoftTCP/IP для Windows, BerklyTCP/IP для Unix линии BSD и т.д. И, хотя этот протокол не стандартизован ни одним госудаством мира, он стал фактически международным стандартом Интернет.


Задание 3. При помощи любой известной вам поисковой системы определите число документов Интернет, в которых цитируется описание протокола IP. Попробуйте найти собственно описание протокола и ознакомиться сним.

Указание. Этот документ называется RFC-791 (RequestForComments-791).

Задание 4. Вывести справку о протоколе ARP (AddressResolutionProtocol):. Пуск-Выполнить-стм или Пуск-Прграммы-Стандартные-Командная строка : arp /?. Записать в отчет назначение этого протокола и его ключей

```
_ 🗆 ×
 C:\WINDOWS\system32\cmd.exe
 C:\Documents and Settings\litneva>arp /?
Отображение и изменение таблиц преобразования IP—адресов в физические, используе
мые протоколом разрешения адресов (ARP).
   ые протоколом разрешения адресов
 NRP -s inet_addr eth_addr [if_addr]
NRP -d inet_addr [if_addr]
NRP -a [inet_addr] [-N if_addr]
                                       Отображает текущие ARP-записи, опрашивая текущие данные протокола. Если задан inet_addr, то будут отображены IP и и физический адреса только для заданного компьютера. Если более одного сетевого интерфейса используют ARP,
                                       то будут отображаться записи для каждой таблицы.
То же, что и ключ —a.
Определяет IP—адрес.
Отображает ARP—записи для заданного в if_addr сетевого
      inet_addr
-N if_addr
                                      Отображает НКР-записи для заданного в 1г_addr сетевого интерфейса.
Удаляет узел, задаваемый inet_addr. inet_addr может содержать символ шаблона * для удаления всех узлов.
Добавляет узел и связывает internet aдрес inet_addr с физический адрес задается с физический адрес задается 6 байтами (в шестнадцатеричном виде), разделенных дефисом.
Эта связь является постоянной.
    eth_addr
if_addr
                                       Определяет физический адрес
                                       Если параметр задан, — он определяет интернет адрес интерфейса,
чья таблица преобразования адресов должна измениться.
Если не задан, — будет использован первый доступный интерфейс.
                          157.55.85.212
                                                                 00-aa-00-62-c6-09
                                                                                                                          Добавляет статическую запись.
Выводит ARP-таблицу.
```

Задание 5.Вывести на экран специальную таблицу (агр-кэш), содержащую перечень аппаратных адресов локального сегмента сети и соответствующих им IP-адресов. Таблицу занести в отчет.

Задание 6. Преобразуйте следующие доменные имена в IP-адреса: www.mail.ru,www.google.com,www.bsu.edu.ru, ns.mmf.rsu.ru, ns.rsu.ru, krinc.rsu.ru, math.rsu.ru, www.rsu.ru, ftp.rsu.ru, uic.rsu.ru, rsu.ru. Сделайте выводы.

Для определения IP-адреса по известному доменному имени (и наоборот) можно воспользоваться утилитой **nslookup**. Ее вывод состоит из имени и адреса сервера имен, выдающего ответ (это локальный сервер имен), и, собственно, ответа — информации об IP-адресах:

```
C:\WINDOWS\system32\cmd.exe

C:\Documents and Settings\litneva\nslookup www.vkontakte.ru

*** Can't find server name for address 192.168.1.1: Non-existent domain

*** Default servers are not available

Server: UnKnown

Address: 192.168.1.1

Name: www.vkontakte.ru

Addresses: 87.240.188.252, 87.240.188.253, 87.240.188.254, 87.240.188.249

87.240.188.250, 87.240.188.251
```

Задание 7. Даны имена веб-серверов. Выберите по одному серверу из каждой строки таблицы. Для каждого выбранного сервера определите IP-адрес, выясните название владельца IP-адреса, определите название и местонахождение организации, которой принадлежит веб-сервер. Результаты офорите в виде таблицы.

Азия	www.mu.ac.in	www.ntu.edu.tw	www.sharjah.ac.ae	www.kimep.kz
Европа	www.us.es	www.sorbonne.fr	www.ox.ac.uk	www.unizh.ch
Северная				
Америка	www.stanford.edu	www.ufl.edu	www.nmt.edu	www.yale.edu
Россия	www.kubstu.ru	www.kbsu.ru	www.spbu.ru	www.festu.ru

Содержание отчета:

- 1. Цель
- 2. Результат выполнения заданий №№1-7
- 3. Выводы

Контрольные вопросы

- 1. ІР-адрес, формат записи
- 2. Классы ІР-адресов
- 3. Значения выделенных ІР-адресов
- 4. Как узнать IP-адрес вашегокомпьютера
- 5. Как проверить наличие/качество связи по протоколу IP с другимкомпьютером
- 6. Где находятся файлы networks и hosts? Содержимоефайлов
- 7. Командаhostname
- 8. Протокол ARP, наиболее важныеключи
- 9. СлужбаDNS
- 10. Утилита nslookup
- 11. Получение дополнительной информации о доменном имени
- 12. Проверка незанятости доменного имени
- 13. Организация, занимающаяся централизованным распределением IP-адресов
- 14. Порядок распределения ІР-адресов

Лабораторная работа № 9 Подсети и маски

Цель: выяснить назначение масок в ІР-адресации.

Ход работы:

- 1. Изучить теоретическийматериал.
- 2. Выполнить задания в соответствии суказаниями.
- 3. Оформить отчет по лабораторной работе в соответствии с требованиями (содержание отчета см.ниже).
- 4. Подготовить ответы на контрольные вопросы(устно)

ШТеоретический материал:

Использование масок в ІР-адресации

Традиционная схема деления IP-адреса на номер сети и номер узла основана на понятии класса, который определяется значениями нескольких первых бит адреса. Именно потому, что первый байт адреса 185.23.44.206 попадает в диапазон 128-191, мы можем сказать, что этот адрес относится к классу В, а значит, номером сети являются первые два байта, дополненные двумя нулевыми байтами - 185.23.0.0, а номером узла - 0.0.44.206.

А что если использовать какой-либо другой признак, с помощью которого можно было ,бы более гибко устанавливать границу между номером сети и номером узла? В качестве такого признака сейчас получили широкое распространение маски.

Маска - это число, которое используется в паре с IP-адресом; двоичная запись маски содержит единицы в тех разрядах, которые должны в IP-адресе интерпретироваться как номер сети. Поскольку номер сети является цельной частью адреса, единицы в маске также должны представлять непрерывную последовательность.

Для стандартных классов сетей маски имеют следующие значения:

- класс A 11111111. 00000000. 00000000. 00000000(255.0.0.0);
- класс В 11111111. 11111111. 00000000. 00000000(255.255.0.0);
- класс C-11111111.11111111.1111111.00000000(255.255.255.0).

Снабжая каждый IP-адрес маской, можно отказаться от понятий классов адресов и сделать более гибкой систему адресации. Например, если рассмотренный выше адрес 185.23.44.206 ассоциировать с маской 255.255.255.0, то номером сети будет 185.23.44.0, а не 185.23.0.0, как это определено системой классов.

В масках количество единиц в последовательности, определяющей границу номера сети, не обязательно должно быть кратным 8, чтобы повторять деление адреса на байты. Пусть, например, для IP-адреса 129.64.134.5 указана маска 255.255.128.0, то есть в двоичном виде:

ІР-адрес 129.64.134.5 - 10000001. 01000000.10000110. 00000101

Если игнорировать маску, то в соответствии с системой классов адрес 129.64.134.5 относится к классу B, а значит, номером сети являются первые 2 байта - 129.64.0.0, а номером узла - 0.0.134.5.

Если же использовать для определения границы номера сети маску, то 17 последовательных единиц в маске, «наложенные» на IP-адрес, определяют в качестве номера сети в двоичном выражениичисло:

10000001. 01000000. 10000000. 00000000 или в десятичной форме записи - номер сети 129.64.128.0, а номер узла0.0.6.5.

Механизм масок широко распространен в IP-маршрутизации, причем маски могут использоваться для самых разных целей. С их помощью администратор может структурировать свою сеть, не требуя от поставщика услуг дополнительных номеров сетей. На основе этого же механизма поставщики услуг могут объединять адресные пространства нескольких сетей путем введения так называемых «префиксов» с целью уменьшения объема таблиц маршрутизации и повышения за счет этого производительности маршрутизаторов.

Как происходит передача данных

1. ІР-адрес в двоичном представлении разбивается на 2 части - адрес сети (левая часть адреса) и адрес хоста (правая частьадреса).

Например, в адресе 190.167.34.2 первые 24 бита могут быть адресом сети, а последние 8 - адресом хоста.

Тогда наш адрес будет выглядеть как 10111110101001110010001000000010, где зеленым цветом выделена сетевая часть адреса (она одинакова для всех хостов локальной сети), а красным - часть адреса, адресующая хост внутри локальнойсети.

Для того, чтобы быстро вычислять по IP-адресу адрес сети или хоста, используется понятие маски подсети (subnetmask). Это двоичное число, в котором все биты адреса сетевой части адреса нулю. 1, a все остальные биты равны В нашем случае ДЛЯ адреса 101111101010011110010001000000010 получим маску подсети 11111111111111111111111111100000000.

2. Маску подсети принято записывать в том же десятичном формате, что и IP-адрес. Для этого нужно каждый байт маски перевести в десятичное число и записать полученные десятичные числа черезточки.

В нашем случае Ответ:

OIBEL.

11111111₂=255

11111111₂=255

11111111₂=255

 $000000000_2=0$

255.255.255.0 - маска подсети.

Маску подсети в настоящее время все чаще называют маской сети, что точней отображает ее смысл.

3. Информационные пакеты пересылаются напрямую от компьютера-отправителя к компьютеру-получателю только в пределах одной сети. Если компьютер-получатель находится в другой сети, то информация пересылается специальному компьютеру сети, который называется шлюзом (gateway). Его адрес всегда известен. Об этом заботится системный администратор. Компьютер-шлюз имеет связь с как минимум с одной другой сетью и ретранслирует информацию в нужном направлении. Этот процесс называется маршрутизацией(routing).

Задание 1. Выясните, каков будет порядок отправки информацию по адресам 192.168.193.31 и 192.167.192.3 для хоста с адресом 192.167.12.3 и маской подсети 255.255.0.0. Решение задачи запишите в отчет. Решение выполните на основе примера и запишите в отчет:

Пример.

Если ваш компьютер, имеющий IP адрес 192.169.204.12 и маску подсети 255.255.192.0 должен отправить информацию компьютеру с адресом 192.169.198.15, то прежде всего ваш компьютер проверит, находится ли получатель информации в той же сети. Для этого двоичное представление адреса получателя он побитово умножит на двоичное представление маски подсети, то в результате получится адрессети:

Аналогичную процедуру компьютер проделает со своим адресом для того, чтобы узнать адрес своей собственной сети:

110000001010100111000000000000000000 (адрес своей собственной сети)

Если адрес сети получателя совпадает с адресом собственной сети, следовательно, получатель находится в локальной сети, и информация может быть послана напрямую. Если бы совпадения нет, то информация будет отправлена шлюзу (с адресом, например,192.168.192.2) с указанием адреса получателя 192.169.204.12, а он переслал бы ее в другую сеть. Этот процесс будет продолжаться до тех пор, пока информация не дойдет до получателя.

Задание 2. Определение настроек протокола IP вашего компьютера.

Запустите программу ipconfig. Получите доступ к командной строке и напечатайте ipconfig. Узнайте доменное имя вашего компьютера и IP-адрес сервера имен вашего компьютера при помощи программы ipconfig, запущенной с ключем /all. Если информация не умещается на экране, используйте программу-фильтр more, которая разбивает вывод на экран на порции по 25 строк. Напишите в командной строке ipconfig /all | more и нажмите Enter.

Включить в отчёт выводимые командой параметры с краткими комментариями.

```
C:\>ipconfig

Настройка протокола IP для Windows

DNS-суффикс этого подключения . . : 192.168.0.1

IP-адрес . . . . . . . . : 255.255.255.0

Основной шлюз . . . . . . : 192.168.0.10

C:\>_
```

Задание 3. По IP -адресу определить идентификатор сети и идентификатор узла (подразумеваются стандартные классы IP-адресов) (вариант выбирается в соответствии с порядковым номером в списке. См. таблицу

Содержание отчета:

- 1. Цель
- 2. Результат выполнения заданий №№1-3
- 3. Выводы

Контрольные вопросы

- 1. ІР-адрес, формат записи
- 2. Классы ІР-адресов
- 3. Значения выделенных IP-адресов
- 4. Порядок распределения IP-адресов
- 5. Использование масок вІР-адресации
- 6. Утилита ipconfig. Назначение.

Методические указания к выполнению лабораторных работ по дисциплине «Компьютерные сети» я специальности 230105 «Программное обеспечение вычислительной техники и автоматизированных систем»

	для специальности 230105 «Программное обеспечение вычислительной техники и автоматизированных систем»							
Вариант 1	Вариант 2	Вариант 3	Вариант 4	Вариант 5	Вариант 6	Вариант 7	Вариант 8	Вариант 9
192.168.1.1 126.15.25.5 221.186.52.65 125.14.7.8 Вариант 10	136.15.25.5 201.86.52.65 15.14.7.85	164.145.7.77 222.186.52.65 5.154.1.9 Вариант 12	133.14.27.95 192.186.52.65 115.1.79.8	190.15.25.5 199.16.59.65 120.1.78.8 Вариант 14	219.186.52.65 188.14.7.85	69.14.7.85 Вариант 16	202.26.6.79 3.157.61.85	129.25.26.10 139.135.125.135 203.186.52.65 29.16.68.75 Вариант 18
136.15.25.5	159.15.25.5		130.15.25.5	196.125.251.54		190.18.17.7	128.18.65.99	136.15.25.5
219.145.54.56			208.186.52.65		1.186.52.65			221.189.5.47
1.84.74.9			78.14.7.85		118.14.7.85	195.13.7.8		25.14.7.85
Вариант 19	Вариант 20	Вариант 21	Вариант 22	Вариант 23	Вариант 24	Вариант 25	Вариант 26	Вариант 27
11.18.15.211 16.1.205.58 14.16.2.65 115.124.7.85	190.168.1.1 1.15.25.5 192.186.52.65 112.14.7.85	156.15.25.5 22.16.5.65	194.168.1.15 13.15.25.5 121.186.52.65 8.4.7.85	136.15.25.5	19.168.1.1 192.15.25.5 221.186.52.65 155.1.7.195	191.68.17.51 186.16.25.5 222.226.5.6 15.1.1.1	10.10.1.1 130.115.52.10 1.79.2.65 197.14.7.85	191.16.21.141 196.15.205.58 21.186.52.65 145.14.7.85
Вариант 28	Вариант 29	Вариант 30						
192.168.1.150 13.15.25.5 111.186.52.65 139.1.1.85	6.15.5.59	191.168.1.1 236.15.25.5 211.16.54.65 15.141.7.5						

Лабораторная работа № 10 Работа с утилитами протокола TCP/IP

Цель: изучить этапы настройки протокола TCP/IP и диагностические утилиты TCP/IP

Ход работы:

- 1. Изучить теоретическийматериал.
- 2. Выполнить задания в соответствии суказаниями.
- 3. Оформить отчет по лабораторной работе в соответствии с требованиями (содержание отчета см.ниже).
 - 4. Подготовить ответы на контрольные вопросы (устно)

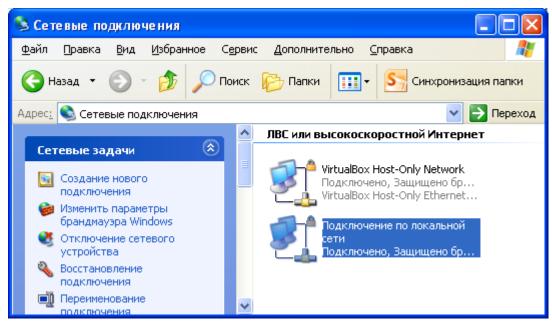
Пеоретический материал:

Разрешение имен для сетевых подключений и подключений удаленного доступа

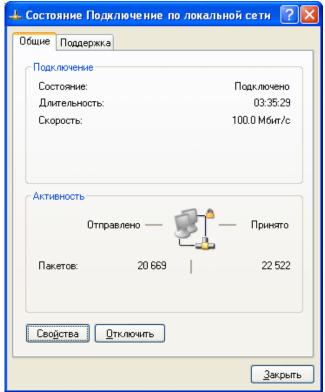
Помимо IP-адреса, для сетевых подключений и подключений удаленного доступа в сети TCP/IP может потребоваться средство сопоставления имен компьютеров с IP-адресами. Существует четыре механизма разрешения имен: служба DNS, служба WINS, широковещательное разрешение имен и использование файлов Hosts и Lmhosts.

В небольших сетях, где IP-адреса не изменяются, сетевые подключения и подключения удаленного доступа могут пользоваться для разрешения имен файлами Hosts и Lmhosts. Эти файлы находятся на локальном диске, так что в этом случае не требуется передавать серверу WINS или DNS запросы на разрешение имен и ожидать от негоответа.

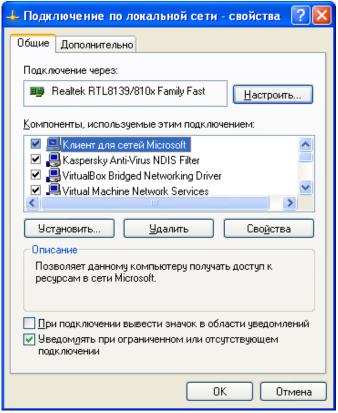
Настройка протокола ТСР/ІР


TCP/IP (TransmissionControlProtocol/InternetProtocol) — самый популярный сетевой протокол, служащий основой Интернета. Предлагаемые им средства маршрутизации обеспечивают максимальную гибкость функционирования сетей предприятий. В WindowsXP протокол TCP/IP устанавливается автоматически. В сетях TCP/IP клиентам должны быть назначены IP-адреса. Кроме того, клиентам может потребоваться служба имен или алгоритм разрешения имен.

Каждому удаленному компьютеру, подключающемуся к серверу удаленного доступа в сети TCP/IP системы Windows, этот сервер присваивает IP-адрес. Если нужно использовать фиксированный IP-адрес, сервер удаленного доступа должен быть настроен таким образом, чтобы разрешать пользователям запрашивать конкретный адрес.


Сетевые компоненты

Сетевой протокол ТСР/ІР, также как сетевой адаптер, драйвер сетевого адаптера, сетевые службы относится к сетевым компонентам операционной системы.


Для просмотра состояния, настройки сетевых компонент нажмите кнопку Пуск -> Подключение -> Отобразить все подключения. Откроется окно папки Сетевые подключения. Вы также можете выбрать пункт Свойства в контекстном меню раздела Сетевое окружение, расположенного в меню "Пуск".

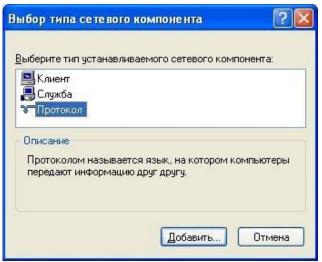
В окне представлены различные соединения вашего компьютера с внешним миром. Дважды щелкните по значку **Подключение по локальной сети.** Появится новое окно с информацией о состоянии соединения.

Кнопка **Свойства** вызывает окно настройки свойств соединения, в том числе и параметров используемых протоколов.

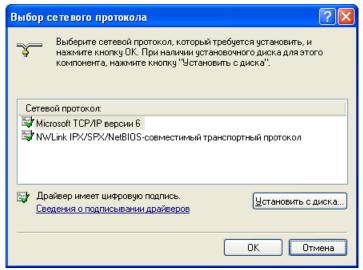
В этом окне вы можете получить информацию о сетевом адаптере, через который осуществляется соединение. Щелкнув кнопку **Настроить**, вы откроете окно свойств сетевого адаптера и, при необходимости, сможете их изменить.

В списке представлены программные компоненты, которые обеспечивают работу компьютера в сети. Для нормальной работы Windows XP подключает следующие компоненты:

Компонент	Описание
Клиент для сетей Microsoft	Обеспечивает компьютеру доступ к ресурсам сети
	Позволяет делать папки и принтеры компьютера общими для доступа к ним по сети
THINOTOKOH VIHTENHETA (TUP/IP)	Обеспечивает связь компьютеров в локальных и глобальных сетях


При необходимости можно установить дополнительные компоненты.

Установка протокола


При установке WindowsXPProfessional для подключения к локальной сети по умолчанию устанавливается сетевой протокол TCP/IP.

Если по каким-то причинам он отсутствует в списке компонентов (например, был удален), вы можете установить его заново.

Для установки протокола нажмите кнопку **Установить**, в списке устанавливаемых компонентов выберите **Протокол**, затем кнопку **Добавить**.

Далее из предложенного вам списка сетевых протоколов выберите TCP/IP и нажмите **ОК**.

ІР-адреса

ІР-адрес используется для точного определения компьютера в сети.

IP-адреса компьютеров должны быть уникальны в рамках одной сети, но в разных сетях, не соединенных друг с другом, могут встречаться одинаковыеадреса.

IP-адреса делятся на статические и динамические.

<u>Статический IP-адрес</u> присваивается компьютеру администратором вручную и жестко закрепляется за этим компьютером. Используя статический адрес, вы можете контролировать работу данного компьютера в сети, ограничивать или запрещать доступ в Интернет и т.п.

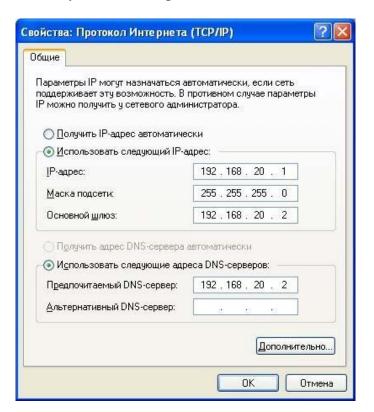
<u>Динамические IP-адреса.</u> Если компьютеру не присвоен статический IP-адрес, то адрес назначается автоматически специальной службой (IANA), входящей в состав операционной системы. Такой адрес называется <u>динамическим</u> адресом, т.к. при каждом включении компьютера и подключении его к локальной сети адрес может меняться. Поэтому контролировать или ограничивать доступ в Интернет при динамической адресации крайне сложно.

Автоматическое назначение IP-адресов службой IANA гарантирует уникальность выдаваемого IP-адреса.

Если компьютер с установленной ОС WindowsXPProfessional находится в одноранговой сети, то служба IANA сама проводит настройку IP-адреса своего компьютера, используя один из зарезервированных адресов.

В сетях, управляемых сервером, динамический IP-адрес назначается специальной серверной службой DHCP, входящей в состав WindowsServer 2003.

По умолчанию протокол TCP/IP настроен на автоматическое получениеIP-адреса,т.е. этот адрес является динамическим. Таким образом, если вы решили использовать динамические адреса в школьной сети, то никаких дополнительных настроеквпротоколе делать не нужно. Все компьютеры сами определят свои IP-адреса и соединятся другсдругом.


Темнеменее, некоторымустройствамвсетивсежене обходимоуказатьстатический IP-адрес. Это устройства или компьютеры, которые предоставляют доступ к общим ресурсам школьной сети. Например, серверы, шлюзы, маршрутизаторы, принт-серверы и т. п. В таком случае обязательно выделяется статический IP-адрес.

В общем случае статическая адресация удобна в небольших (10-20 компьютеров) одноранговых сетях, состав которых редко изменяется. Если количество компьютеров в вашей сети превышает 20 или компьютеры входят в домен WindowsServer 2003, где есть специальная служба, то гораздо удобнее использовать динамическое выделение адресов.

Использование статического ІР-адреса.

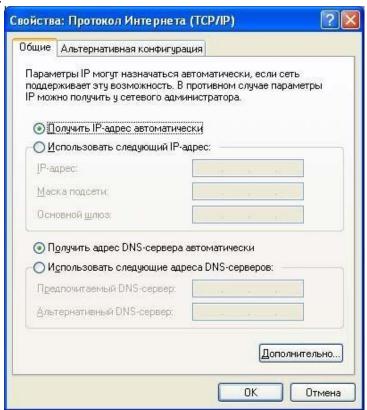
Для настройки протокола TCP/IP нажмите кнопку Пуск -> Подключение -> Отобразить все подключения. Откроется окно папки Сетевые подключения. Дважды щелкните по значку Подключение по локальной сети. Нажмите кнопку Свойства. Выделите протокол Интернета (TCP/IP) и нажмите кнопку Свойства.

Чтобы использовать статический адрес, необходимо установить переключатель в положение **Использовать следующий IP-адрес**. Затем заполните соответствующие поля.

IP-адрес — Если данный сетевой адаптер компьютера будет выходить напрямую в Интернет, он должен иметь статический адрес, который вы можете получить у провайдера. Помните, что для локальной сети используются **IP-**адреса частного диапазона, а для Интернет общие **IP-**адреса.

Маска подсети — Дополняет IP-адрес и разбивает его на адрес сети и адрес компьютера. Если данный сетевой адаптер подключен к школьной сети, вы указываете маску вашей сети, если же адаптер подключается к сети Интернет, то маску предоставляет провайдер.

Основной шлюз - IP-адрес узла, предоставляющего выход из данной сети в другую сеть (напримерИнтернет).


Предпочтительный и альтернативный DNS-серверы - IP-адреса основного и резервного DNS-серверов, на которых лежит информация о соответствии символьных имен компьютеров их IP-адресам (только для доменов или прямого подключения к Интернету). В последнем случае выдается провайдером.

Настроив параметры протокола, щелкните кнопку ОК.

Использование динамического ІР-адреса.

Для настройки протокола TCP/IP нажмите кнопку Пуск -> Подключение -> Отобразить все подключения. Откроется окно папки Сетевые подключения. Дважды щелкните по значку Подключение по локальной сети. Нажмите кнопку Свойства. Выделите протокол Интернета (TCP/IP) и нажмите кнопку Свойства.

В настройках протокола ТСР/IР установите переключатель в положение Получить IP-адрес автоматически.



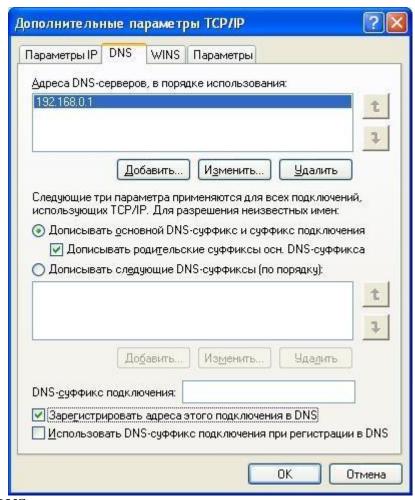
Также рекомендуется указать автоматическое получение адресов DNS-серверов. Это удобно, особенно, если ваш компьютер является рабочей станцией в сети с выделенным сервером на котором работает служба DHCP.

Настройка дополнительных параметров ТСР/ІР.

Стек протоколов TCP/IP (можно говорить протокол TCP/IP) в WindowsXP достаточно сложен и позволяет настраивать множество дополнительных параметров. Доступ к ним вы можете получить, щелкнув кнопку Дополнительно в окне свойств протокола TCP/IP.

Вкладка Параметры ІР

На вкладке **Параметры IP**вы можете связать с сетевым адаптером несколько IPадресов и задать несколько основных шлюзов.


Несколько IP-адресов для одного сетевого адаптера принято использовать, например, при частом переносе компьютера из одной сети в другую.

Добавить адрес вы можете, щелкнув кнопку **Добавить** в разделе **IP-адреса**. Первый адрес из списка будет считаться основным, и отображаться в окне основных свойств протокола TCP/IP.

Компьютер, который часто переносят из одной сети в другую, должен настраиваться и на разные шлюзы, которые должны быть прописаны в разделе **Основные шлюзы**. Тогда для каждого шлюза, кроме его адреса, задается метрика - целое число от 1 до 9999. Метрики служат для определения приоритета шлюзов. Чем меньше метрика, тем выше приоритет шлюза.

Таким образом, шлюз с метрикой 2 будет использован только при недоступности шлюза с метрикой 1.

Вкладка DNS

На вкладке **DNS**вы можете настроить все параметры, связанные со службой DNS (только для доменов или прямого подключения к Интернету).

Служба DNS занимается разрешением имен - преобразованием символьного имени компьютера в его IP-адрес. База данных имен и их числовых аналогов всех компьютеров сети хранится на компьютере, где установлена служба DNS. Такой компьютер называю DNS-сервером, или сервером имен.

При установке операционной системы протокол TCP/IP настраивается на сервер имен того домена, в который входит данный компьютер.

Когда компьютеру требуется по имени выяснить IP-адрес, он через протокол TCP/IP связывается с сервером имен, передавая ему свой запрос.

Сервер имен обрабатывает запрос. Если указанный домен входит в его базу данных, то сервер преобразует имя в IP-адрес и возвращает результат клиенту.

Если запрашиваемое доменное имя не входит в его базу, то он переадресует запрос вышестоящему серверу имен.

По аналогии с IP-адресами можно задать несколько адресов DNS-серверов. Метрики здесь не используются, просто при недоступности первого сервера будет использован второй и т. д. И, наконец, настроить конфигурацию WINS можно при помощи одноименной вкладки окна Дополнительные параметры TCP/IP. По умолчанию поддержка WINS для протокола TCP/IP отключена.

Диагностика сети.

В состав ТСР/ІР входят диагностические утилиты, предназначенные для проверки конфигурации тестирования сетевого соединения.

	*
arp	Выводит для просмотра и изменения таблицу трансляции адресов, используемую протоколом разрешения адресов ARP (AddressResolutionProtocol - определяет локальный адрес по IP-адресу)
hostname	Выводит имя локального хоста. Используется без параметров.
ipconfig	Выводит значения для текущей конфигурации стека TCP/IP: IP-адрес, маску подсети, адрес шлюза по умолчанию, адреса WINS (Windows Internet Naming Service) и DNS (Domain Name System)
nbtstat	Выводит статистику и текущую информацию по NetBIOS, установленному поверх TCP/IP. Используется для проверки состояния текущих соединений NetBIOS.
netstat	Выводит статистику и текущую информацию по соединению ТСР/ІР.
nslookup	Осуществляет проверку записей и доменных псевдонимов хостов, доменных сервисов хостов, а также информации операционной системы, путем запросов к серверам DNS.
ping	Осуществляет проверку правильности конфигурирования TCP/IP и проверку связи с удаленным хостом.
route	Модифицирует таблицы маршрутизации IP. Отображает содержимое таблицы, добавляет и удаляет маршруты IP.
tracert	Осуществляет проверку маршрута к удаленному компьютеру путем отправки эхо-пакетов протокола ICMP (InternetControlMessageProtocol). Выводит маршрут прохождения пакетов на удаленный компьютер.

Задание 1. Настройте стек протоколов TCP/IPдля использования статического IP-адреса.

- 1. Откройте окно **Сетевые подключения**(Пуск/Панель управления/Сетевые подключения).
- 2. Вызовите**свойства подключения по локальной сети**. Для этого можно воспользоваться контекстнымменю.
- 3. В появившемся диалоговом окне на вкладке **Общие** откройте свойства **Протокол Интернета TCP/IP**.
- 4. Щелкните переключатель *Использовать следующий IP-адрес* и введите в соответствующие поля данные: **IP_адрес**; **Macky подсети**; **Основной шлюз**; **ПредпочитаемыйDNS**.
- 5. Примените параметры кнопкой OK.
- 6. Закройте окно свойств подключения кнопкой OK (если потребуется, то согласитесь на перезагрузкукомпьютера).
- 7. Проверьте работоспособность стека протоколов *TCP/IP*. **Задание 2.** Настройте TCP/IP для автоматического получения IP-адреса.
- 1. Откройте окно Сетевыеподключения.
- 2. Вызовите свойства Подключения по локальнойсети.

- 3. Откройте свойства Протокол Интернета ТСР/ІР.
- 4. Установите переключатель Получить ІР-адресавтоматически.
- 5. Закройте диалоговое окно Свойства: Протокол Интернета ТСР/ІРкнопкой ОК.
- 6. Примените параметры кнопкой OK.
- 7. Проверьте настройку стека протоколов*ТСР/IP*.

Задание 3. Получение справочной информации по командам

Выведите на экран справочную информацию по утилитам arp, ipconfig, nbtstat, netstat, nslookup,route, ping, tracert, pathping, hostname. Для этого в командной строке введите имя утилиты без параметров или с /?. Изучите и запишите ключи, используемые при запуске утилит.

Задание 4. Получение имени хоста

Выведите на экран имя локального хоста с помощью команды hostname.

Задание 5. Изучение утилиты ipconfig

Проверьте конфигурацию TCP/IP с помощью утилиты ipconfig. Заполните таблицу:

ІР-адрес	<i>y</i> . <i>y</i> .
Маска подсети	
Основной шлюз	
Адрес DHCP-сервера	
Описание адаптера	
Физический адрес сетевого адаптера	
Адрес DNS-сервера	
Адрес WINS-сервера	

Содержание отчета

- 1. Цель
- 2. Результат выполнения заданий №№ 1-5, дополненные соответствующими скриншотами.
- 3. Выводы

Контрольные вопросы

- 1. Общие сведения о протоколе ТСР/ІР
- 2. Что необходимо узнать прежде, чем настраивать протокол TCP/IP.
- 3. Для чего нужны серверы DHCP, WINS.
- 4. Функция DNS-сервера.
- 5. Этапы настройки протоколаТСР/ІР.
- 6. Возможно ли использование другого протокола?
- 7. Утилиты для проверки правильности конфигурирования TCP/IP.

Лабораторная работа № 11 Анализ и диагностика сети

Цель: отработать навыки по применению утилит для диагностики сети

Ход работы:

- 1. Изучить теоретическийматериал.
- 2. Выполнить задания в соответствии суказаниями.
- 3. Оформить отчет по лабораторной работе в соответствии с требованиями (содержание отчета см.ниже).
 - 4. Подготовить ответы на контрольные вопросы(устно)

Пеоретический материал:

В состав ТСР/IР входят диагностические утилиты, предназначенные для проверки конфигурации тестирования сетевого соединения.

arp	Выводит для просмотра и изменения таблицу трансляции адресов, используемую протоколом разрешения адресов ARP (AddressResolutionProtocol - определяет локальный адрес по IP-адресу)
hostname	Выводит имя локального хоста. Используется без параметров.
ipconfig	Выводит значения для текущей конфигурации стека TCP/IP: IP-адрес, маску подсети, адрес шлюза по умолчанию, адреса WINS (Windows Internet Naming Service) и DNS (Domain Name System)
nbtstat	Выводит статистику и текущую информацию по NetBIOS, установленному поверх TCP/IP. Используется для проверки состояния текущих соединений NetBIOS.
netstat	Выводит статистику и текущую информацию по соединению ТСР/ІР.
nslookup	Осуществляет проверку записей и доменных псевдонимов хостов, доменных сервисов хостов, а также информации операционной системы, путем запросов к серверам DNS.
ping	Осуществляет проверку правильности конфигурирования ТСР/ІР и проверку связи с удаленным хостом.
route	Модифицирует таблицы маршрутизации IP. Отображает содержимое таблицы, добавляет и удаляет маршруты IP.
tracert	Осуществляет проверку маршрута к удаленному компьютеру путем отправки эхо-пакетов протокола ICMP (InternetControlMessageProtocol). Выводит маршрут прохождения пакетов на удаленный компьютер.

Утилита ipconfig.

Проверка правильности конфигурации ТСР/ІР.

При устранении неисправностей и проблем в сети TCP/IP следует сначала проверить правильность конфигурации TCP/IP. Для этого используется утилита ipconfig.

Эта команда полезна на компьютерах, работающих с DHCP (DynamicHostConfigurationProtocol), так как дает пользователям возможность определить, какая конфигурация сети TCP/IP и какие величины были установлены с помощью DHCP.

Утилита ping.

Утилита ping (PacketInternetGrouper) используется для проверки конфигурирования TCP/IP и диагностики ошибок соединения. Она определяет доступность и функционирование конкретного хоста. Использование ping лучший способ проверки того,

что между локальным компьютером и сетевым хостом существует маршрут. Хостом называется любое сетевое устройство (компьютер, маршрутизатор), обменивающееся информацией с другими сетевыми устройствами по TCP/IP.

Утилита ping (PacketInternetGroper) является одним из главных средств, используемых для отладки сетей, и служит для принудительного вызова ответа конкретной машины. В выполнении команды ping участвуют система маршрутизации, схемы разрешения адресов и сетевые шлюзы. Это утилита низкого уровня, которая не требует наличия серверных процессов на зондируемой машине, поэтому успешный результат при прохождении запроса вовсе не означает, что выполняются какие-либо сервисные программы высокого уровня, а говорит о том, что сеть находится в рабочем состоянии, питание зондируемой машины включено и машина не отказала ("не висит").

Утилита ping имеется не только в UNIX, но и в большинстве реализаций TCP/IP для других операционных систем. В Windows утилита ping имеется в комплекте поставки, но представляет собой программу, выполняющуюся в сеансе DOS из командной строки.

Команда ping проверяет соединение с удаленным хостом путем посылки к этому хосту эхо-пакетов ICMP и прослушивания эхо-ответов. Рing ожидает каждый посланный пакет и печатает количество переданных и принятых пакетов. Каждый принятый пакет проверяется в соответствии с переданным сообщением. Если связь между хостами плохая, из сообщений ping станет ясно, сколько пакетов потеряно. Эхо-запросы посылаются заданное количество раз (ключ -n) или по умолчанию до тех пор, пока пользователь не введет команду прерывания (Ctrl+C или Del), после чего выводятся статистические данные.

По умолчанию передается 4 эхо-пакета длиной 32 байта (периодическая последовательность символов алфавита в верхнем регистре). Ріпд позволяет изменить размер и количество пакетов, указать, следует ли записывать маршрут, который она использует, какую величину времени жизни (ttl) устанавливать, можно ли фрагментировать пакет и т.д.. При получении ответа в поле time указывается, за какое время (в миллисекундах) посланный пакет доходит до удаленного хоста и возвращается назад. Так как значение по умолчанию для ожидания отклика равно 1 секунде, то все значения данного поля будут меньше 1000 миллисекунд. Если вы получаете сообщение "Requesttimeout" (Превышен интервал ожидания), то, возможно, если увеличить время ожидания отклика, пакет дойдет до удаленного хоста. Это можно сделать с помощью ключа-w.

Ping можно использовать для тестирования как имени хоста (DNS или NetBIOS), так и его IP-адреса. Если ping с IP-адресом выполнилась успешно, а с именем - неудачно, это значит, что проблема заключается в распознавании соответствия адреса и имени, а не в сетевом соединении.

Обратите внимание:

поскольку с утилиты ping начинается хакерская атака, некоторые серверы в целях безопасности могут не посылать эхо-ответы (например, www.microsoft.com). Не ждите напрасно, введите команду прерывания.

Формат команды:

ping[-**t**] [-**a**] [-**n**число] [-**l**размер] [-**f**] [-**i**TTL] [-**v**TOS][-**r**число] [-**s**число] [[-**j**списокУзлов]][-**k**списокУзлов]][-**w**таймаут] конечноеИмя

Параметры утилиты ping

		1 1 7 1 8				
	Парамет	Назначение				
-t		Отправка пакетов(эхо-запросов) на указанный узел до команды				
		прерывания: Ctrl+Break - для вывода статистики и продолжения работы				
		утилиты; Ctrl+C - для прекращения работы утилиты.				
-a		Определение IP-адресов по именам узлов.				
<u>-n чі</u>	исло	Число отправляемых эхо-запросов; по умолчанию – 4.				

умолчанию — 32 байта. Максимально — 65527. -f Установка флага, запрещающего фрагментацию пакета. 3адание времени жизни в секундах отправляемого пакета (поле TTL в заголовке пакета) с эхо-запросом. По умолчанию берется значение TTL, заданное по умолчанию для узла. Для узлов WindowsXPэто значение равно 128. Максимально — 255. -v TOS Задание типа службы (поле "TypeOfService") в заголовке отправляемого пакета. По умолчанию значение TOS — 0. Максимально — 255. -г число Запись маршрута с эхо-запросом для указанного числа переходов. Параметр число имеет значение от 1 до 9. -s число Вариант штампа времени Интернета в заголовке пакета для записи времени прибытия пакета для каждого перехода. Параметр число имеет значение от 1 до 4. -j Свободный выбор маршрута по списку узлов; последовательные узлы могут быть разделены шлюзами. список Узлов — это набор IP- адресов (в точечно-десятичной форме), разделенных пробелами. -k Жесткий выбор маршрута по списку узлов; последовательные узлы не могут быть разделены шлюзами. -w таймаут Интервал времени в миллисекундах ожидания эхо-ответа; по умолчанию — 4000 ms. При превышении интервала следует сообщение об ошибке: "Requesttimeout". конечноеИм Имя узла или IP-адрес, в котором маршрут заканчивается	- l размер	Размер поля данных в отправленных пакетах с эхо-запросом; по		
-i TTL Задание времени жизни в секундах отправляемого пакета (поле TTL в заголовке пакета) с эхо-запросом. По умолчанию берется значение TTL, заданное по умолчанию для узла. Для узлов WindowsXPэто значение равно 128. Максимально – 255. -v TOS Задание типа службы (поле "TypeOfService") в заголовке отправляемого пакета. По умолчанию значение TOS – 0. Максимально – 255. -r число Запись маршрута с эхо-запросом для указанного числа переходов. Параметр число имеет значение от 1 до 9. -s число Вариант штампа времени Интернета в заголовке пакета для записи времени прибытия пакета для каждого перехода. Параметр число имеет значение от 1 до 4. -j Свободный выбор маршрута по списку узлов; последовательные узлы могут быть разделены шлюзами. список Узлов — это набор IP- адресов (в точечно-десятичной форме), разделенных пробелами. -k Жесткий выбор маршрута по списку узлов; последовательные узлы не могут быть разделены шлюзами. -w таймаут Интервал времени в миллисекундах ожидания эхо-ответа; по умолчанию — 4000 ms. При превышении интервала следует сообщение об ошибке: "Requesttimeout".		умолчанию – 32 байта. Максимально – 65527.		
заголовке пакета) с эхо-запросом. По умолчанию берется значение TTL, заданное по умолчанию для узла. Для узлов WindowsXPэто значение равно 128. Максимально — 255. -v TOS Задание типа службы (поле "ТуреOfService") в заголовке отправляемого пакета. По умолчанию значение TOS — 0. Максимально — 255. -г число Запись маршрута с эхо-запросом для указанного числа переходов. Параметр число имеет значение от 1 до 9. -s число Вариант штампа времени Интернета в заголовке пакета для записи времени прибытия пакета для каждого перехода. Параметр число имеет значение от 1 до 4. -ј Свободный выбор маршрута по списку узлов; последовательные узлы могут быть разделены шлюзами. список Узлов — это набор IP- адресов (в точечно-десятичной форме), разделеных пробелами. -к Жесткий выбор маршрута по списку узлов; последовательные узлы не могут быть разделены шлюзами. -к список Узлов быть разделены шлюзами. Интервал времени в миллисекундах ожидания эхо-ответа; по умолчанию — 4000 ms. При превышении интервала следует сообщение об ошибке: "Requesttimeout".	-f	Установка флага, запрещающего фрагментацию пакета.		
тта, заданное по умолчанию для узла. Для узлов WindowsXPэто значение равно 128. Максимально − 255. -v TOS Задание типа службы (поле "ТуреOfService") в заголовке отправляемого пакета. По умолчанию значение TOS − 0. Максимально − 255. -r число Запись маршрута с эхо-запросом для указанного числа переходов. Параметр число имеет значение от 1 до 9. Вариант штампа времени Интернета в заголовке пакета для записи времени прибытия пакета для каждого перехода. Параметр число имеет значение от 1 до 4. -j Свободный выбор маршрута по списку узлов; последовательные узлы могут быть разделены шлюзами. список Узлов − это набор IP- адресов (в точечнодесятичной форме), разделенных пробелами. -k Жесткий выбор маршрута по списку узлов; последовательные узлы не могут быть разделены шлюзами. -w таймаут Интервал времени в миллисекундах ожидания эхо-ответа; по умолчанию − 4000 ms. При превышении интервала следует сообщение об ошибке: "Requesttimeout".	-i TTL	Задание времени жизни в секундах отправляемого пакета (поле TTL в		
равно 128. Максимально — 255. -v TOS Задание типа службы (поле "ТуреOfService") в заголовке отправляемого пакета. По умолчанию значение TOS — 0. Максимально — 255. -r число Запись маршрута с эхо-запросом для указанного числа переходов. Параметр число имеет значение от 1 до 9. -s число Вариант штампа времени Интернета в заголовке пакета для записи времени прибытия пакета для каждого перехода. Параметр число имеет значение от 1 до 4. -j Свободный выбор маршрута по списку узлов; последовательные узлы могут быть разделены шлюзами. список Узлов — это набор IP- адресов (в точечно-десятичной форме), разделенных пробелами. -к список Узлов -ж типе форме в маршрута по списку узлов; последовательные узлы не могут быть разделены шлюзами. -к список Узлов -к типе форме в маршрута по списку узлов; последовательные узлы не могут быть разделены шлюзами. -к типе форме в маршрута по списку узлов; последовательные узлы не могут быть разделены шлюзами. -к типе форме в маршрута от списку узлов; последовательные узлы не могут быть разделены шлюзами. -к типе форме в маршрута от списку узлов; последовательные узлы не могут быть разделены шлюзами. -к типе форме в маршрута от списку узлов; последовательные узлы не могут быть разделены шлюзами. -к типе форме в маршрута от списку узлов; последовательные узлы не могут быть разделены шлюзами. -к типе форме в маршрута от списку узлов; последовательные узлы не могут быть разделены шлюзами. -к типе форме в маршрута от списку узлов; последовательные узлы не могут быть разделены шлюзами.		заголовке пакета) с эхо-запросом. По умолчанию берется значение		
-v TOS Задание типа службы (поле "ТуреOfService") в заголовке отправляемого пакета. По умолчанию значение TOS − 0. Максимально − 255. -r число Запись маршрута с эхо-запросом для указанного числа переходов. Параметр число имеет значение от 1 до 9. -s число Вариант штампа времени Интернета в заголовке пакета для записи времени прибытия пакета для каждого перехода. Параметр число имеет значение от 1 до 4. -j Свободный выбор маршрута по списку узлов; последовательные узлы могут быть разделены шлюзами. список Узлов − это набор IP- адресов (в точечнодесятичной форме), разделенных пробелами. -k Жесткий выбор маршрута по списку узлов; последовательные узлы не могут быть разделены шлюзами. -w таймаут Интервал времени в миллисекундах ожидания эхо-ответа; по умолчанию − 4000 ms. При превышении интервала следует сообщение об ошибке: "Requesttimeout".		TTL, заданное по умолчанию для узла. Для узлов WindowsXPэто значение		
отправляемого пакета. По умолчанию значение $TOS - 0$. Максимально — 255. -г число Запись маршрута с эхо-запросом для указанного числа переходов. Параметр число имеет значение от 1 до 9. -ѕ число Вариант штампа времени Интернета в заголовке пакета для записи времени прибытия пакета для каждого перехода. Параметр число имеет значение от 1 до 4. -ј Свободный выбор маршрута по списку узлов; последовательные узлы могут быть разделены шлюзами. список Узлов — это набор IP- адресов (в точечно-десятичной форме), разделенных пробелами. -к Жесткий выбор маршрута по списку узлов; последовательные узлы не могут быть разделены шлюзами. -к список Узлов быть разделены шлюзами. -м таймаут Интервал времени в миллисекундах ожидания эхо-ответа; по умолчанию — 4000 ms. При превышении интервала следует сообщение об ошибке: "Requesttimeout".		равно 128 . Максимально – 255.		
-г число Запись маршрута с эхо-запросом для указанного числа переходов. Параметр число имеет значение от 1 до 9. -s число Вариант штампа времени Интернета в заголовке пакета для записи времени прибытия пакета для каждого перехода. Параметр число имеет значение от 1 до 4. -j Свободный выбор маршрута по списку узлов; последовательные узлы могут быть разделены шлюзами. список Узлов − это набор IP- адресов (в точечнодесятичной форме), разделенных пробелами. -k Жесткий выбор маршрута по списку узлов; последовательные узлы не могут быть разделены шлюзами. -w таймаут Интервал времени в миллисекундах ожидания эхо-ответа; по умолчанию − 4000 ms. При превышении интервала следует сообщение об ошибке: "Requesttimeout".	-v TOS			
-г число Запись маршрута с эхо-запросом для указанного числа переходов. Параметр число имеет значение от 1 до 9. -s число Вариант штампа времени Интернета в заголовке пакета для записи времени прибытия пакета для каждого перехода. Параметр число имеет значение от 1 до 4. -j Свободный выбор маршрута по списку узлов; последовательные узлы могут быть разделены шлюзами. список Узлов — это набор IP- адресов (в точечно-десятичной форме), разделенных пробелами. -k Жесткий выбор маршрута по списку узлов; последовательные узлы не могут быть разделены шлюзами. -w таймаут Интервал времени в миллисекундах ожидания эхо-ответа; по умолчанию — 4000 ms. При превышении интервала следует сообщение об ошибке: "Requesttimeout".		отправляемого пакета. По умолчанию значение $TOS-0$.		
 число имеет значение от 1 до 9. вариант штампа времени Интернета в заголовке пакета для записи времени прибытия пакета для каждого перехода. Параметр число имеет значение от 1 до 4. свободный выбор маршрута по списку узлов; последовательные узлы могут быть разделены шлюзами. списокУзлов — это набор IP- адресов (в точечнодесятичной форме), разделенных пробелами. жестий выбор маршрута по списку узлов; последовательные узлы не могут быть разделены шлюзами. жесткий выбор маршрута по списку узлов; последовательные узлы не могут быть разделены шлюзами. чтервал времени в миллисекундах ожидания эхо-ответа; по умолчанию — 4000 ms. При превышении интервала следует сообщение об ошибке: "Requesttimeout". 		Максимально -255 .		
-s число Вариант штампа времени Интернета в заголовке пакета для записи времени прибытия пакета для каждого перехода. Параметр число имеет значение от 1 до 4. -j Свободный выбор маршрута по списку узлов; последовательные узлы могут быть разделены шлюзами. список Узлов — это набор IP- адресов (в точечно-десятичной форме), разделенных пробелами. -k Жесткий выбор маршрута по списку узлов; последовательные узлы не могут быть разделены шлюзами. -w таймаут Интервал времени в миллисекундах ожидания эхо-ответа; по умолчанию — 4000 ms. При превышении интервала следует сообщение об ошибке: "Requesttimeout".	-r число	Запись маршрута с эхо-запросом для указанного числа переходов. Параметр		
прибытия пакета для каждого перехода. Параметр <i>число</i> имеет значение от 1 до 4. -j Свободный выбор маршрута по списку узлов; последовательные узлы могут быть разделены шлюзами. списокУзлов — это набор IP- адресов (в точечнодесятичной форме), разделенных пробелами. -k Жесткий выбор маршрута по списку узлов; последовательные узлы не могут списокУзлов быть разделены шлюзами. -w таймаут Интервал времени в миллисекундах ожидания эхо-ответа; по умолчанию — 4000 ms. При превышении интервала следует сообщение об ошибке: "Requesttimeout".		число имеет значение от 1 до 9.		
 до 4. -j Свободный выбор маршрута по списку узлов; последовательные узлы могут списокУзлов быть разделены шлюзами. списокУзлов — это набор IP- адресов (в точечнодесятичной форме), разделенных пробелами. -k Жесткий выбор маршрута по списку узлов; последовательные узлы не могут списокУзлов быть разделены шлюзами. -w таймаут Интервал времени в миллисекундах ожидания эхо-ответа; по умолчанию — 4000 ms. При превышении интервала следует сообщение об ошибке: "Requesttimeout". 	-s число			
-j Свободный выбор маршрута по списку узлов; последовательные узлы могут списокУзлов быть разделены шлюзами. списокУзлов — это набор IP- адресов (в точечнодесятичной форме), разделенных пробелами. -k Жесткий выбор маршрута по списку узлов; последовательные узлы не могут списокУзлов быть разделены шлюзами. -w таймаут Интервал времени в миллисекундах ожидания эхо-ответа; по умолчанию — 4000 ms. При превышении интервала следует сообщение об ошибке: "Requesttimeout".				
 списокУзлов быть разделены шлюзами. списокУзлов – это набор IP- адресов (в точечно-десятичной форме), разделенных пробелами. -k Жесткий выбор маршрута по списку узлов; последовательные узлы не могут быть разделены шлюзами. -w таймаут Интервал времени в миллисекундах ожидания эхо-ответа; по умолчанию – 4000 ms. При превышении интервала следует сообщение об ошибке: "Requesttimeout". 		до 4.		
десятичной форме), разделенных пробелами. -k -k -к -к -к -к -к -к -к -к	•			
-k	списокУзлов			
списокУзлов быть разделены шлюзами. -w таймаут Интервал времени в миллисекундах ожидания эхо-ответа; по умолчанию – 4000 ms. При превышении интервала следует сообщение об ошибке: "Requesttimeout".		десятичной форме), разделенных пробелами.		
-w таймаут Интервал времени в миллисекундах ожидания эхо-ответа; по умолчанию — 4000 ms. При превышении интервала следует сообщение об ошибке: "Requesttimeout".	- k	Жесткий выбор маршрута по списку узлов; последовательные узлы не могут		
умолчанию – 4000 ms. При превышении интервала следует сообщение об ошибке: "Requesttimeout".	списокУзлов	быть разделены шлюзами.		
об ошибке: "Requesttimeout".	- w таймаут			
конечноеИм Имя узла или ІР-адрес, в котором маршрут заканчивается				
	конечноеИм	Имя узла или IP-адрес, в котором маршрут заканчивается		

На практике большинство опций в формате команды можно опустить, тогда в командной строке может быть: ping имя узла.

```
# pingnewslink.org
Обмен пакетами с 207.227.119.10 по 32 байт:
Ответ от 207.227.119.10: число байт=32 время=196мcTTL=237
Ответ от 207.227.119.10: число байт=32 время=198мсTTL=237
Ответ от 207.227.119.10: число байт=32 время=193мсТТL=237
Ответ от 207.227.119.10: число байт=32 время=195мсТТL=237
Ответ от 207.227.119.10: число байт=32 время=199мсTTL=237
Ответ от 207.227.119.10: число байт=32 время=196мcTTL=237
Ответ от 207.227.119.10: число байт=32 время=192мсTTL=237
Ответ от 207.227.119.10: число байт=32 время=197мсTTL=237
Ответ от 207.227.119.10: число байт=32 время=197мсTTL=237
Время ожидания запросаистекло.
Ответ от 207.227.119.10: число байт=32 время=202мсTTL=237
Ответ от 207.227.119.10: число байт=32 время=192мсТТL=237
Ответ от 207.227.119.10: число байт=32 время=191мсTTL=237
Ответ от 207.227.119.10: число байт=32 время=193мсTTL=237
Ответ от 207.227.119.10: число байт=32 время=200мсТТL=237
Ответ от 207.227.119.10: число байт=32 время=196мсТТL=237
Ответ от 207.227.119.10: число байт=32 время=196мсТТL=237
Ответ от 207.227.119.10: число байт=32 время=199мсTTL=237
Ответ от 207.227.119.10: число байт=32 время=196мсТТL=237
Ответ от 207.227.119.10: число байт=32 время=193мсТТL=237
      Статистика Ping для 207.227.119.10:
      Пакетов: послано = 20, получено = 19, потеряно = 1 (5% потерь),
      Приблизительное время передачи и приема:
      наименьшее = 191мс, наибольшее=
                                       202мс, среднее=
                                                         186мс
```

```
C:\WINDOWS\system32\cmd.exe

C:\Documents and Settings\litneva\ping 192.168.1.25

Обмен пакетами с 192.168.1.25 по 32 байт:

Ответ от 192.168.1.25: число байт=32 время=1мс TTL=128

Ответ от 192.168.1.25: число байт=32 время<1мс TTL=128

Статистика Ping для 192.168.1.25:

Пакетов: отправлено = 4, получено = 4, потеряно = 0 (0% потерь),
Приблизительное время приема-передачи в мс:

Минимальное = Омсек, Максимальное = 1 мсек, Среднее = 0 мсек
```

Обратите внимание:

Вы наверняка обратили внимание на параметр TTL, значение которого выводится для каждого тестового пакета при выполнении команды ping. Этот параметр определяет время жизни пакета (TTL - TimeToLive). Для каждого новорожденного пакета его значение равно 256. При прохождении через шлюз или маршрутизатор, значение TTL уменьшается на величину временной задержки на маршрутизаторе. Если значение TTL становится меньше или равно нулю, пакет уничтожается. Данное правило принять для предотвращения бесконечного блуждания пакетов по кольцевым маршрутам Сети. Для того, чтобы проследить конкретный маршрут информационного пакета в Интернет, существуют программы, посылающие серии тестовых пакетов с монотонно возрастающими значениями TTL. Маршрутизатор, на котором значение TTL достигло нуля, посылает диагностическое сообщение о "смерти" пакета хосту, отправившему пакет в сеть. Таким образом, можно проследить маршрут пакета. Windowsверсия программы называется tracert (traceroute - трассировкапути)

Если ответ не приходит (такого адреса нет в сети в принципе, или хост выключен), программа ping выводит следующее сообщение

```
C:\Program Files\Far>ping 192.168.0.13

Обмен пакетами с 192.168.0.13 по 32 байт:

Превышен интервал ожидания для запроса.

Статистика Ping для 192.168.0.13:
Пакетов: отправлено = 4, получено = 0, потеряно = 4 (100% потерь),
```

VTUTUTA tracert

Tracert - это утилита трассировки маршрута. Она использует поле TTL (time-to-live, время жизни) пакета IP и сообщения об ошибках ICMP для определения маршрута от одного хоста до другого.

Программа tracert позволяет выявлять последовательность шлюзов, через которые проходит IP-пакет на пути к пункту своего назначения. У этой команды есть очень много опций, большинство из которых применяются системными администраторами крайне редко.

Утилита tracert может быть более содержательной и удобной, чем ping, особенно в тех случаях, когда удаленный хост недостижим. С помощью нее можно определить район проблем со связью (у Internet-провайдера, в опорной сети, в сети удаленного хоста) по тому, насколько далеко будет отслежен маршрут. Если возникли проблемы, то утилита выводит на экран звездочки (*), либо сообщения типа ``Destinationnetunreachable", ``Destinationhostunreachable", ``Requesttimeout", ``TimeExeeded".

Утилита tracert работает следующим образом: посылается по 3 пробных эхо-пакета на

каждый хост, через который проходит маршрут до удаленного хоста. На экран при этом выводится время ожидания ответа на каждый пакет (Его можно изменить с помощью параметра -w). Пакеты посылаются с различными величинами времени жизни. Каждый маршрутизатор, встречающийся по пути, перед перенаправлением пакета уменьшает величину TTL на единицу. Таким образом, время жизни является счетчиком точек промежуточной доставки (хопов). Когда время жизни пакета достигнет нуля, предполагается, что маршрутизатор пошлет в компьютер-источник сообщение ICMP ``TimeExeeded" (Время истекло). Маршрут определяется путем посылки первого эхо-пакета с TTL=1. Затем TTL увеличивается на 1 в каждом последующем пакете до тех пор, пока пакет не достигнет удаленного хоста, либо будет достигнута максимально возможная величина TTL (по умолчанию 30, задается с помощью параметра -h).

Маршрут определяется путем изучения сообщений ІСМР, которые присылаются обратно промежуточными маршрутизаторами.

Примечание: некоторые маршрутизаторы просто молча уничтожают пакеты с истекшим TTL и не будут видны утилите tracert.

Формат команды:

tracert[-d] [-**h**максимальное ЧислоПереходов] [**-ј**списокУзлов] **[-w**интервал] имяКонечногоКомпьютера

Параметры утилиты tracert

П	Назначение		
-d	Запрещает разрешение ІР-адресов промежуточных		
	маршрутизаторов в имена.		
-h	Задает максимальное число переходов на пути при поиске конечного узла.		
максимальноеЧ	Значение по умолчанию – 30.		
- j списокУзлов	Указывает для сообщений с эхо-запросом использование параметра		
	свободной маршрутизации в заголовке ІР с набором промежуточных		
	шлюзов, указанных в списке Узлов.		
-w интервал	Определяет в миллисекундах время ожидания эхо-ответов протокола		
	ІСМР, соответствующих данному эхо-запросу. Если эхо-ответ не получен		
	в течении заданного времени, протокол утилиты tracert выводит (*).		
	Таймаут по умолчанию – 4000 (4 сек.)		
имяКонечногоК	Задает узел назначения, указанный ІР-адресом или именем узла.		
омпьютера			

Как обычно, имя машины может быть задано в символической или числовой форме. Выходная информация представляет собой список машин, начиная с первого шлюза и кончая пунктом назначения. Кроме того, показано полное время прохождения каждого шлюза.

```
Users\DocandSat>tracertyandex.ru
```

Трассировка маршрута к уа.ru [93.158.134.3]

с максимальным числом прыжков 30:

C	Marci	имальным	ANCHOM	прыжков 5	o .
	1	2 ms	1 ms	1 ms	192.168.1.1
	2	26 ms	27 ms	27 ms	194.214.221.83.static.donpac.ru [83.221.214.194]
	3	25 ms	25 ms	25 ms	207.214.221.83.static.donpac.ru [83.221.214.207]
	4	25 ms	26 ms	25 ms	235.214.221.83.static.donpac.ru [83.221.214.235]
	5	25 ms	26 ms	25 ms	platov-rnd-ix.yandex.net [193.232.140.33]
	6	65 ms	64 ms	64 ms	korolev-vlan2301.yandex.net [213.180.208.18]
	7	64 ms	65 ms	65 ms	popovich-vlan120.yandex.net [87.250.233.126]
	8	65 ms	64 ms	65 ms	13-s900-s400.yandex.net [213.180.213.57]
	9	65 ms	65 ms	65 ms	www.yandex.ru [93.158.134.3]

Трассировка завершена.

Выходная информация представляет собой список машин, начиная с первого шлюза и

кончая пунктом назначения. Кроме того, фиксируется полное время прохождения каждого шлюза.

В следующем примере пакет должен пройти два маршрутизатора (10.0.0.1 и 192.168.0.1), чтобы достигнуть узла 172.16.0.99. Шлюз по умолчанию для узла имеет адрес 10.0.0.1, а IP-адресом маршрутизатора в сети 192.168.0.0 является адрес 192.168.0.1.

```
C:\>tracert 172.16.0.99 -d

Трассировка маршрута к 172.16.0.99 с максимальным числом прыжков30:

1 2 мс 3 мс 2 мс 10.0.0.1

2 75 мс 83 мс 88 мс 192.168.0.1

3 73 мс 79 мс 93 мс 172.16.0.99

Трассировка завершена.
```

Утилита pathping

Pathping - это средство трассировки маршрута, сочетающее функции программ **ping**и tracertи обладающее дополнительными возможностями, которых не имеют две эти pathpingв течение некоторого программы. Команда периода времени многочисленные сообщения с эхо-запросом каждому маршрутизатору, находящемуся между исходным пунктом и пунктом назначения, а затем на основании пакетов, полученных от каждого из них, вычисляет результаты. Поскольку **pathping**показывает степень потери пакетов для каждого маршрутизатора или связи, можно определить маршрутизаторы или подсети, имеющие проблемы с сетью. Команда **pathping**выполняет эквивалентное **tracert**действие, идентифицируя маршрутизаторы, находящиеся на пути. Затем заданного периодически в течение времени обменивается пакетами всеми маршрутизаторами и на основании числа пакетов, полученных от каждого из них, обрабатывает статистику.

Запущенная без параметров, команда **pathping**выводит справку. Формат команды:

pathping[-n] [-hмаксимальное Число Переходов] [-gсписок Узлов] [-pпериод] [-q число Запросов [-wинтервал] [-T] [-R] [имя Конечного Компьютера]

Параметры утилиты pathping Назначение Параметр Предотвращает попытки команды pathpingconocтавить IP- адреса -n промежуточных маршрутизаторов их именам. Это позволяет ускорить вывод результатов команды pathping. -**h** макс. Число Пе Задает максимальное число переходов на пути при поиске реходов конечного узла. Значение по умолчанию -30. -д списокУзлов Указывает для сообщений с эхо-запросом использование параметра свободной маршрутизации в IP-заголовке с набором промежуточных мест назначения, указанным в параметре список Узлов. При свободной маршрутизации последовательные промежуточные места назначения могут быть разделены одним или несколькими маршрутизаторами. Максимальное число адресов или имен в списке равно 9. список Узлов представляет собой набор ІР-адресов (в точечно-десятичной нотации), разделенных пробелами. Задает время ожидания между последовательными проверками связи -р период (в миллисекундах). Значение по умолчанию равно 250 миллисекунд (1/4 секунды). **-q** числоЗапросов Задает количество сообщений с эхо-запросом, отправленных каждому маршрутизатору пути. По умолчанию - 100. Задает время ожидания каждого отклика (в миллисекундах). -w интервал Значение по умолчанию равно 3000 миллисекунд (3 секунды)

- T	Присоединяет тег приоритета уровня 2 (например, 802.1р) к	
	сообщениям с эхо-запросом, отправляемым каждому сетевому	
	устройству на маршруте. Это помогает обнаружить сетевые	
	устройства, для которых не настроен приоритет уровня 2. Он	
	предназначен для проверки соединений, использующих	
	спецификации QoS .	
-R	Проверяет, все ли сетевые устройства вдоль маршрута поддерживают	
	протокол RSVP (ResourceReservationSetupProtocol, протокол настройки	
	резервирования ресурсов), который позволяет главному компьютеру	
	резервировать определенную часть пропускной способности для	
	потока данных. Этот параметр предназначен для проверки	
	соелинений, использующих спецификации ОоЅ.	
имя	Задает узел назначения, идентифицированный ІР-адресом или	
Конечного	именем узла.	

Приведенный ниже пример содержит результаты работы команды pathping

```
D:\>pathping -ncorp1
Трассировка маршрута к согр1 [10.54.1.196]
с максимальным числом прыжков 30:
  0 172.16.87.35
  1 172.16.87.218
  2 192.168.52.1
  3 192.168.80.1
  4 10.54.247.14
  5 10.54.1.196
```

Подсчет статистики за: 125 сек. ...

		Исходныйузел	Маршрутныйузел	
Нор	RTT	Утер./Отпр.	Утер./Отпр.	Адрес
0				172.16.87.35
			0/100= 0%	
1	41мс	0/ 100 = 0%	0/ 100 = 0%	172.16.87.218
			13/ 100 = 13%	
2	22мс	16/ 100 = 16%	3/ 100 = 3%	192.68.52.1
			0/ 100 = 0%	
3	24мс	13/ 100 = 13%	0/ 100 = 0%	192.68.80.1
			0/ 100 = 0%	
4	21мс	14/ 100 = 14%	1/ 100 = 1%	10.54.247.14
			0/ 100 = 0%	
5	24мс	13/ 100 = 13%	0/ 100 = 0%	10.540.10.196

Трассировка завершена.

После запуска **pathping**сначала выводится путь. Это тот же путь, который выводится командой **tracert**. Далее команда выдает сообщение о том, что она в течение 125 секунд занята (это время варьируется в зависимости от числа переходов). В течение этого времени происходит сбор сведений со всех маршрутизаторов, перечисленных выше, и со всех соединений между ними. По завершении этого периода выводятся результаты проверки.

В отчете, приведенном выше, столбцы Маршрутный узел/ Утер./Отпр. и Адрес показывают, что при переходе от адреса 172.16.87.218 к 192.168.52.1 теряется 13 процентов пакетов. Остальные соединения работают нормально. Маршрутизаторы в узлах 2 и 4 также пропускают пакеты, адресованные им, но эти потери не оказывают влияние на их способность пересылать пакеты, которые им неадресованы.

Оценки потерь для соединений (задаваемых вертикальной чертой | в столбце Адрес) показывают перегрузку, вызывающую потерю пакетов, пересылаемых по маршруту. Она свидетельствует о заторах в каналах связи. Степень потерь пакетов на маршрутизаторах (в правом столбце таких строк указан IP-адрес маршрутизатора) показывает, что процессоры

этих маршрутизаторов перегружены.

Утилита ARP.

Основная задача протокола ARP - трансляция IP-адресов в соответствующие локальные адреса. Для этого ARP-протокол использует информацию из ARP-таблицы (ARP- кэша). Если необходимая запись в таблице не найдена, то протокол ARP отправляет широковещательный запрос ко всем компьютерам локальной подсети, пытаясь найти владельца данного IP-адреса. В кэше могут содержаться два типа записей: статические и динамические. Статические записи вводятся вручную и хранятся в кэше постоянно. Динамические записи помещаются в кэш в результате выполнения широковещательных запросов. Для них существует понятие времени жизни. Если в течение определенного времени (по умолчанию 2 мин.) запись не была востребована, то она удаляется из кэша.

Утилита netstat.

Утилита netstat позволяет получить статическую информацию по некоторым из протоколов стек Утилита netstat позволяет получить статическую информацию по некоторым из протоколов стека (TCP, UDP, IP, ICMP), а также выводит сведения о текущих сетевых соединениях. Особенно она полезна на брандмауэрах, с ее помощью можно обнаружить нарушения безопасности периметра сети.

Формат команды:

netstat [-a] [-e] [-n] [-s] [-рпротокол] [-r] [интервал]

Параметры утилиты netstat

Параметр	Назначение
-a	Выводит все подключения и сетевые порты. Подключения сервера обычно
	не выводятся.
-е	Выводит статистику Ethernet. Возможна комбинация с ключом [-s]
-n	Выводит адреса и номера портов в числовом формате (а не в символьном).
-s	Выводит статистику для каждого протокола. По умолчанию выводится статистика для TCP, UDP, ICMP и IP. Ключ [-p] может быть использован для указания подмножества стандартных протоколов.
-р протокол	Выводит соединения для протокола, заданного параметром <i>протокол</i> . Параметр <i>протокол</i> может иметь значения ТСР или UDP. Если используется с ключом [-s] для вывода статистики по отдельным протоколам, <i>протокол</i> может принимать значения TCP,UDP,ICMP,IP.
-r	Выводит таблицу маршрутизации
интервал	Обновляет выведенную статистику с интервалом в интервал секунд. Нажатие клавиш CTRL + B останавливает обновление статистики. Если этот параметр опущен, netstat выводит сведения о текущей конфигурации один раз.

Данная утилита проста и в то же время очень полезна. Она позволяет выявить несанкционированные соединения с сетью.

Утилита nbtstat

Выводит локальную **таблицу имен** NetBIOS (таблицу имен NetBIOS, зарегистрированных локальными приложениями) и **кэш имен** NetBIOS (кэш, содержащий NetBIOS-имена компьютеров, разрешенные в IP-адреса). Используется в качестве диагностической команды для устранения неполадок с разрешениями имен NetBIOS, путем вывода информации и текущих соединений по **протоколу NBT**(NetBIOS через TCP/IP).

Протокол NBT разрешает имена NetBIOS в IP-адреса. TCP/IP предоставляет возможность разрешения имен несколькими способами, включая поиск в локальном кэше, запросы к WINS-серверу, широковещательные запросы, запросы к DNS-серверу и поиск в

файлах Lmhostsи Hosts.

Формат команды:

nbtstat[-ayд_имя] [-AIP-адрес] [-c] [-n] [-R] [-г] [-S] [-s] [интервал]

Параметры утилиты **nbtstat**

Пар	Назначение
-а у∂_имя	(adapterstatus) Выводит таблицу имен удаленных компьютеров по именам.
	Команда nbtstat с данным параметром отрабатывает запрос о состоянии
	адаптера NetBIOS к удаленному компьютеру и возвращает локальную таблицу
	имен NetBIOS этого компьютера и аппаратный адрес его сетевогоадаптера.
-A <i>IP</i> -	(Adapterstatus) Выводит таблицу имен удаленных компьютеров по IP-
адрес	адресам.
-c	(cache) Выводит содержимое кэша имен протокола NetBIOS с IP- адресами.
	Здесь содержатся сопоставления имен с ІР-адресами для удаленных компьютеров.
-n	(names). Выводит список локальных имен протокола NetBIOS,
-11	зарегистрированных локально программами, например, сервером и
	перенаправителем (редиректором). Слово «registered» (в листинге протокола
	выполнения команды) обозначает широковещательную (В-узел) или WINS
	(для узлов других типов) регистрацию.
-R	(Reload) Очищает кэш имен протокола NetBIOS и перезагружает его из файла
	Lmhosts.
-r	(resolved) Выводит статистику определения имен для сети Windows. На
	компьютерах с системой Windows2000, использующих протокол WINS, будет
	выведено количество определенных и зарегистрированных путем рассылки или службы WINS имен.
<i>-S</i>	(Sessions) Выводит сведения о работе сервера и клиента, перечисляя текущие
	сеансы NetBIOS и их состояние. Удаленные компьютеры выводятся только по
	IP-адресам.
-S	(sessions) Выводит сведения о работе сервера и клиента. Будет
	сделана попытка преобразования ІР-адресов в имена с
	использованием файла hosts.
интервал	Обновляет выведенную статистику с интервалом в интервал секунд.
	Нажатие клавиш CTRL+Состанавливает обновление статистики. Если
	этот параметр пропущен, nbtstatвыводит сведения о текущей
	конфигурации один раз.

Утилита nslookup

Диагностическая команда для вывода сведений об инфраструктуре DNS. Для использования этой утилиты необходимо изучить принципы работы системы DNS.

Режимы

Команда **nslookup**может работать в двух режимах: **обычном** (автономном) и в **интерактивном**.

Если требуется вывод только **небольшой** части информации, следует использовать **обычный** режим. В качестве первого аргумента следует использовать имя или IP-адрес компьютера, сведения о котором будут получены. В качестве второго аргумента - имя или IP-адрес сервера имен службы DNS. Если второй параметр не задан, используется сервер DNS, установленный по умолчанию.

Если требуется получить **более полные** сведения, следует использовать **интерактивный** режим. В качестве первого аргумента следует ввести знак дефиса (-) и имя или IP-адрес сервера

DNS. Можно опустить оба параметра, тогда используется сервер DNS, установленный по умолчанию.

Формат команды:

nslookup[-*napaмemp* ...] [компьютер | - [сервер]]

Здесь

-параметр -.Задает одну или несколько команд (подкоманд) **nslookup**(для работы в интерактивном режиме) как параметры командной строки. (Список подкоманд можно открыть в разделе справочника для **nslookup**). Каждый параметр состоит из дефиса (-) и следующей за ним без пробелов команды, а также, в некоторых случаях, знака равенства (=) и значения. Например, чтобы изменить установленный по умолчанию тип запроса о сведениях для хост-компьютера и установить начальное время ожидания равным 10 секундам, следует ввести команду:

nslookup-querytype=hinfo -timeout=10

Длина строки вызова команды не может превышать 256 символов.

компьютер - Получает сведения о заданном компьютере с использованием текущего сервера или сервера, заданного параметром сервер (если этот параметр указан). Если компьютер задан IP- адресом, а тип запроса- Аили PTR, будет выведено имя компьютера. Если компьютер задан именем без замыкающей точки, имя текущего домена будет добавлено к указанному имени. Это зависит от состояния параметров команды set: domains, srchlist, defnameu search.

Чтобы получить сведения о компьютере не из текущего домена, в конец имени должна быть добавлена точка. Если в командной строке введен дефис (-) вместо *компьютера*, команда **nslookup**перейдет в интерактивный режим.

server - Задает сервер имен DNS. Если параметр *сервер* не указан, используется текущий сервер DNS.

Диагностика

Если при обработке запроса возникла ошибка, командой **nslookup**на экран будет выведено сообщение. В таблице перечислены возможные сообщения об ошибках.

Таблица

Сообщение об ошибке	Описание		
	Сервер не ответил на запрос в течение определенного времени и		
	после определенного числа повторных попыток. Имеется		
Timed out	возможность установить период ожидания с помощью		
	подкоманды settimeout= значение и/или число повторных		
	попыток с помощью подкоманды setretry = значение.		
No response from server	Сервер имен DNS не запущен на сервере		
	Сервер имен DNS не содержит записей о ресурсах указанного		
No records	типа, хотя имя сервера задано верно. Тип запроса задается		
	командой set querytype.		
Nonexistent domain	Заданный компьютер или имя домена DNS не существует.		
Connection refused-или-	Невозможно подключиться к серверу имен DNS или к серверу		
Network is unreachable	службы finger. Эта ошибка обычно возникает с запросами		
Network is unreachable	команд ls и finger .		
Server failure	Сервер имен DNS обнаружил внутреннее несоответствие в своей		
Server famure	базе данных и не может корректно ответить на запрос.		
Refused	Отказано в обработке запроса сервером имен DNS.		
Earmet armer	Сервер DNS обнаружил ошибку в формате полученного пакета.		
Format error	Это может свидетельствовать об ошибке в команде nslookup .		

Подкоманды nslookup

В таблице представлен список некоторых команд интерактивного режима nslookup.

Команда	Действие
set ключевое_слово[=зн	Изменение настроек, определяющих работу функций nslookup .
аче ние]	<i>Ключевое_слово</i> – см. справочник: команды Nslookup.
set all	Вывод текущих значений параметров настройки. Также выводит
	сведения о сервере, используемом по умолчанию, и о хост-
	компьютере.
set [no]deb[ug]	Включение (debug) и отключение (nodebug) режима отладки.
	Если отладка включена, будут выводиться более подробные
	сведения о пакетах, отправленных серверу, и о полученных
	ответах. По умолчанию -nodebug (отключено).
set [no]d2	Включение (d2) и отключение (nod2) углубленного режима
	отладки. В этом режиме будут выводиться все поля
	передаваемых и получаемых пакетов. По умолчанию – nod2
set [no]def[name]	Добавление DNS-имени домена, используемого по умолчанию, к
	запросу поиска одиночного компонента. Одиночным называется
	компонент, не содержащий точек. По умолчанию –
	defname(включено).
set do[main]=имя	Изменение имени домена DNS, используемого по умолчанию.
	Это имя добавляется к имени, задаваемому в запросе, в
	соответствии с параметрами defname и search. Список поиска
	домена DNS содержит родительские домены для домена,
	используемого по умолчанию, если его имя содержит хотя бы два
	компонента. Например, для домена mfg.widgets.comсписок поиска
	будет включать <i>mfg.widgets.com u widgets.com</i> . Команда setsrchlist используется для задания другого списка. Для вывода
	всего списка должна быть использована команда setall. По
	умолчанию – текущий домен.
	·
set q[uerytype]=значение	Изменение типа запроса. Подробные сведения см. в документе RFC 1035. По умолчанию – тип A , означающий, что выполняется
q[исгугурс] =значение	прямой просмотр, т.е. поиск, основанный на имени DNS другого
	компьютера, сохраненного в записи ресурса адреса.
	(Команда settype эквивалентна команде setquerytype.)
set [no]rec[urse]	Параметр указывает серверу имен DNS, запрашивать ли другие
set [no]rec[urse]	серверы, если запрошенные сведения не содержатся на сервере.
	По умолчанию – recurse (запрашивать).
set ret[ry]=число	Установка числа повторных попыток. Если ответ на запрос не
	получен в течение заданного промежутка времени (изменяемого
	командой settimeout), это время удваивается и запрос посылается
	снова. Этот параметр задает количество таких повторений. По
	умолчанию -4 .
set ro[ot]=компьютер	Изменение имени корневого сервера. Влияет на работу команды
1	root. По умолчанию – ns.nic.ddn.mil. Параметр компьютер
	указывает новое имя корневого сервера.

set [no]sea[rch]	Если параметр установлен (search) и имя в запросе содержит точки, но не кончается точкой, имена домена DNS будут добавляться к именам в списке поиска до тех пор, пока не будет получен ответ. По умолчанию – search.
set srchl[ist] имя l/имя 2/	Изменение имени домена DNS, используемого по умолчанию, и списка поиска. Может быть указано до шести имен, разделенных косыми чертами (/). Эта команда переопределяет имя домена DNS, используемое по умолчанию, и список поиска команды setdomain. Для вывода всего списка должна быть использована команда setall. По умолчанию –значение, основанное на имени текущего хост-компьютера. Параметр имя1/имя2/ указывает новые имена для домена DNS, используемого по умолчанию, и списка поиска. Например,
	команда setsrchlist=mfg.widgets.com/mrp2.widgets.com/widgets.comустанавли вает домен DNS равным mfg.widgets.comи список поиска из трех имен.
set ti[meout]=число	Изменение начального значения интервала времени в секундах, в
set ti[meout]=4uc.no	течение которого система будет ожидать ответа на запрос. Если в течение этого периода времени ответ на запрос не получен, интервал будет удвоен, а запрос повторен. Число повторных попыток устанавливается командой set retry. По умолчанию – 5.
set [no]v[c]	Если параметр установлен ($v[c]$), при посылке запроса всегда используется виртуальный канал связи. По умолчанию — novc .
ls [параметр]	Вывод сведений для домена DNS. По умолчанию будут
домен_dns	выведены имена компьютеров и их ІР-адреса. Когда вывод
[>имя_файла] [>>	направлен в файл, после вывода каждых 50 записей на экран
имя файла]	будет выводиться символ #. Значения для [параметр] – см.
	справочник по командам nslookup.
view имя_файла	Выдача и сортировка вывода предыдущих команд ls. Параметр <i>имя_файла</i> указывает имя файла, содержащего результаты работы предыдущих команд ls .
lserver домен_dns	Изменение сервера DNS, используемого по умолчанию для заданного домена. Команда Iserver использует первоначально установленный сервер для получения сведений о заданном сервере DNS. Это отличает ее от команды server , использующей текущий сервер. Параметр <i>домен_dns</i> задает новое имя сервера DNS.
server домен_dns	Изменение сервера DNS, используемого по умолчанию для заданного домена. Команда server использует текущий сервер по умолчанию для поиска сведений о заданном сервере DNS. Это отличает ее от команды lserver , использующей первоначально установленный сервер. Параметр <i>домен_dns</i> задает новое имя сервера DNS.

Рассмотрим пример работы утилиты nslookup:

C:\>nslookup

DefaultServer: uni_d-309_04.mstuca.ru Address: 192.168.40.4

> set d2

```
> www.ru
 Server: uni_d-309 04.mstuca.ru
Address: 192.168.40.4
 _____
 SendRequest(), len 24
HEADER:
 opcode = QUERY, id = 2, rcode = NOERROR
headerflags: query, wantrecursion
 questions=1, answers=0,
                             authority records=0, additional =0
QUESTIONS:
 www.ru, type = A, class = IN
 _____
Got answer (40 bytes):
 HEADER:
 opcode = QUERY, id = 2, rcode = NOERROR
headerflags: response, want recursion, recursionavail.
 questions=1, answers=1, authority records=0,
                                                    additional=0
 OUESTIONS:
www.ru, type = A, class = IN
ANSWERS:
 -> www.ru
type = A, class = IN, dlen = 4
 internet address = 194.87.0.50
ttl = 77312 (21 hours 28 mins
32 secs)
Non-authoritativeanswer:
       www . 111
Address: 194.87.0.50
```

Разберём протокол, который выводит утилита **nslookup**. После слова *SendRequest()* мы видим информацию о запросе, посылаемом на сервер DNS.

opcode = QUERY- означает тип операции, являющейся запросом (query).

 ${\it class-}$ говорит о классе сети, в которой будет происходить поиск адреса. В нашем случае это INternet.

headerflag— указывает на тип заголовка. Например, при запросе он будет обязательно query, а при ответе response. Флаг recourse говорит о рекурсивности запроса, т.е. запрос может порождать новый запрос, который может идти вплоть до DNS-сервераROOT.

rcode- код возврата. Если нет ошибки, то равен NOERROR.

answers- количество записей, эквивалентных указанному в запросе доменному имени.

authorityrecords— кол-во DNS серверов, откликнувшихся на запрос. Если не равно 0, то ниже будут указаны их адреса. При ненахождении имени, в протоколе также будет фигурировать поле responsiblemailaddr, где указывается e-mail администратора данного DNS, который может понадобиться в случае возникновения ошибки DNS.

Задание 1. Узнайте IP-адрес соседнего компьютера. Протестируйте соединение с его хостом при помощи программы ping. Результат тестирования занесите в отчет.

Задание 2. С помощью команды ping проверить состояние связи с узлами 192.168.1.1, 192.168.1.10, 192.168.1.45, 192,168.1.25. На выбор, например, mstuca.ru (МГТУ ГА), www.spb.ru (С-Петербург), www.mail.ru (Москва), www.romeguide.it (Италия), www.novol.pl (Польша), www.newslink.org (США). Для каждого из них отметьте время отклика. Попробуйте увеличить время отклика. Задайте различную длину посылаемых пакетов. Число отправляемых запросов рекомендуется взять равным20.

Результаты исследований представить в таблице:

Доменное	ІР-адрес	Страна	Число потерянных	Среднее время прохождения	255	-
имя			запросов, %	запроса, мс	TTL	

Сделать экранные копии листингов, выводимых утилитой в каждом эксперименте (для формирования отчета по лабораторной работе)

Задание 3. Проследите маршрут до какого-либо хоста локальной сети, российского сервера Интернет, зарубежного сервера Интернет, расположенного в Европе, заокеанского сервера Интернет. Например, смотрите узлы в задании 7. Сравните маршруты трассировки.

Описшите маршрут прохождения пакета **для двух** из ранее выбранных узлов (страна, город, сеть). Для этого можно использовать графические утилиты трассировки, например, **NeoTrace**, **VisualRoute**

Задание 4. Описать маршрут прохождения для узла <u>www.yandex.ru</u>. (см. пример в теоретической части). Попытайтесь найти информацию о каждом маршрутизаторе (владелец, местонахождение). Определите среднее время прохождения пакетов до сервера. Найдите большие временные скачки в маршруте и объясните, с чем они связаны.

Задание **5.** Просмотр ARP-кэша

С помощью утилиты arp просмотрите ARP-таблицу локального компьютера. Установите соединение с каким-либо компьютером в сети, пользуясь командой ping. Проверьте состояние таблицы ARP. Убедитесь, что появилась дополнительная строка. Результаты занести в отчет.

Задание 6. Получение информации о текущих сетевых соединениях и протоколах стека TCP/IP.

С помощью утилиты netstat получите статистические данные для пакетов, прошедших через Ethernet-адаптер компьютера, за которым работаете. Получите информацию о текущих соединениях по протоколам ТСР, UDP и IP. Напишите отчёт/расшифровку полученных результатов. Получите листинг с таблицей маршрутизации. Изучите назначение каждой записи в таблице маршрутизации. Результаты занести в отчет.

Задание 7. Получение информации о текущих сетевых соединениях NetBIOS.

С помощью утилиты nbtstat определите ваши текущие соединения NetBIOS, используя утилиту **nbtstat**с параметром [-**s**]. Сделайте выводы. Выведите таблицу имен какого-либо узла (по имени или IP-адресу); выведите локальные имена NetBIOS, выясните содержимое локального кэша имен NetBIOS. Опустошите его. Результаты занести в отчет.

Задание 8. Используя утилиту nslookupв обычном режиме, определите IP-адреса доменных имён. Для выбора имен используйте сформированное panee собственное пространство доменных имен (например, www.demos.su, www.mstuca.ru, cs.starnet.ru, www.ru, www.citforum.ru, www.omen.ru, www.yahoo.com, www.linux.org).

Если выдаётся ошибка о ненайденном соответствии, увеличьте время ожидания запроса, в соответствии с синтаксисом команды **nslookup**.

Проанализируйте и запишите информацию для отчета по лабораторной работе.

▶ Включите режим углубленной отладки **d2.** Выполните задание в этом режиме. Сравните содержание листинга, выдаваемого утилитой в обычном режиме и в режиме углубленной отладки. Проанализируйте значения **каждого** поля заголовков пакетов в запросе и ответе и запишите информацию.

Задание 14. Изучение возможности команды route.

Добавьте статический маршрут до сервера с единичным значением метрики и занесите в отчёт получившуюся таблицу маршрутизации. Опишите назначение и возможности команды.

Задание 15. Оцените состояние маршрутов передачи пакетов в сети с помощью утилиты **pathping**. Определите перегруженные маршрутизаторы, перегруженные линии связи, процент потерь передаваемых пакетов на перегруженных участках сети. Сравните результаты с соответствующими им в предыдущих экспериментах на основе работы утилит **pingutracert**.

Задание 16. Получить список доменов, компьютеров или общих ресурсов на данном компьютере с помощью команды Netview.

Задание 17. Проверьте информацию для сервера и станции - >netaccounts

Задание 18. Изучите возможности команды net используя её расширения: computer, config, name, statistics, send, time.

Содержание отчета

- 1. Цель
- 2. Результат выполнения заданий №№ 1-8, дополненные соответствующими скриншотами.
 - 3. Выводы

Контрольные вопросы

- 1. Каким образом команда ping проверяет соединение с удаленнымхостом?
- 2. Что выводит утилитаnbtstat?
- 3. Что такоехост?
- 4. Что выводит утилитаnetstat?
- 5. Сколько промежуточных маршрутизаторов сможет пройти IP-пакет, если его время жизни равно30?
- 6. Утилита tracert. Назначение. Ключи
- 7. Утилита route. Назначение. Ключи
- 8. Утилита ping.Назначение.Ключи
- 9. Для чего предназначена утилита агр?

Лабораторная работа № 11

Поиск и устранение неполадок с использованием сетевых программных средств

Цель: отработать навыки по поиску и устранению неполадок с использованием сетевых программных средств

Ход работы:

- 1. Изучить теоретическийматериал.
- 2. Выполнить задания в соответствии суказаниями.
- 3. Оформить отчет по лабораторной работе в соответствии с требованиями (содержание отчета см.ниже).
 - 4. Подготовить ответы на контрольные вопросы (устно)

Пеоретический материал:

Команды *NET VIEW и NET USE*

Синтаксис команды NET VIEW, предназначенной для просмотра списка доменов, компьютеров или общих ресурсов на данном компьютере, имеет следующий вид:

NET VIEW [\\компьютер|/DOMAIN[:домен]]

Использование ключа /DOMAIN: домен задает домен, для которого выводится список компьютеров. Если параметр домен не задан, то выводится информация обо всех доменах в сети.

Команда NET USE позволяет подключать/отключать сетевые ресурсы, выводить сведения об имеющихся подключениях. Поддерживаются три варианта синтаксиса этой команды:

NET USE [ycmpoйcmbo|*] [\\компьютер\pecypc[\nanka]]

[napoль|*]] [/USER: $[домен \] noльзователь]$

[[/DELETE]|[/PERSISTENT:[YES | NO]]]

NET USE устройство [/HOME[пароль|*]] [/DELETE:[YES|NO]]

NET USE [/PERSISTENT:[YES|NO]]

Применение ключа /user позволяет задать иное имя пользователя для подключения к общему ресурсу. Параметр домен задает имя другого домена, а *пользователь* — имя пользователя для подключения. Например, команда

NET USE H: \\Serverl\Share /USER:sklad\ivanov

подключает к общему ресурсу \\Server1\Share пользователя ivanov из домена sklad.

Использование ключа /PERSISTENT позволяет управлять постоянными сетевыми подключениями (подключения без устройств не являются постоянными). Параметр уез в этом ключе означает, что все существующие соединения будут сохранены и восстановятся при следующем подключении. Пар метр по указывает на то, что заданное подключение не будет сохранено. Для удаления постоянных подключений используется ключ /delete.

Для восстановления текущих подключений при следующих входах в сеть, независимо от будущих изменений, служит команда:

NET USE /PERSISTENT:YES

Команда NET SHARE

С помощью команды net share можно создавать и удалять совместно используемые ресурсы, а также выводить информацию о таких ресурсах.

Синтаксис команды:

NET SHARE

имя_ресурса

имя ресурса=диск:путь [/USERS:число | /UNLIMITED]

[/REMARK:"текст"]
[/CACHE:Manual | Automatic | No]
[/CACHE:Manual | Documents| Programs | None]
имя_ресурса [/USERS:число | /UNLIMITED]
[/REMARK:"текст"]
[/CACHE:Manual | Documents | Programs | None]
{имя ресурса | имя устройства | диск:путь} /DELETE

Команда net share, запущенная без параметров, выводит информацию обо всех совместно используемых ресурсах на локальном компьютере. Когда выводится список общих ресурсов компьютера, то для каждого ресурса будет выведено сетевое имя ресурса, имя устройства или путь, соответствующие данному ресурсу, и комментарий (если он имеется). Вывод команды net share имеет следующий вид:

Общее имя Ресурс Заметки

ІРС\$ Удаленный ІРС

С\$ C:\
 D\$ D:\
 Cтандартный общий ресурс
 ADMIN\$
 C:\WINNT
 Удаленный Admin

NET SHARE pecypc,

где параметр *ресурс* соответствует сетевому имени общего ресурса, выведет информацию об отдельном ресурсе.

Создать новый совместно используемый ресурс можно с помощью следующей команды:

NET SHARE ресурс=диск:путь [/USERS:количество|/UNLIMITED] [/REMARK:"текст"]

Параметр *диск: путь* задает абсолютный путь к каталогу, который нужно предоставить в общее пользование. Для совместного использования каталога, в имени которого содержатся пробелы, диск и путь этого каталога должны быть заключены в кавычки (" "), например:

NET SHARE MF="C:\Multimedia Files"

Когда общий ресурс создается на сервере, его конфигурация сохраняется. После остановки службы сервера все общие ресурсы отключаются, но после следующего запуска службы сервера они будут восстановлены.

Ключ /users : количество задает максимальное количество пользователей, которым разрешен одновременный доступ к общему ресурсу. Для того чтобы отменить ограничение на число пользователей, которым разрешен одновременный доступ к общему ресурсу, необходимо использовать ключ /unlimited.

Комментарий к ресурсу добавляется при использовании ключа

/REMARK:"meκcm".

Изменить свойства уже созданного общего ресурса можно с помощью следующего варианта команды net share:

NET SHARE *pecypc* [/USERS:количество|/UNLIMITED] [/REMARK:"текст"]

Существующий общий ресурс можно удалить (сделать локальным). Для этого нужно знать либо его сетевое имя, либо абсолютный путь к предоставленному в совместное использования каталогу, и задать команду net share следующим образом:

NET SHARE [ресурс[диск:путь] /DELETE

Пример:

Для предоставления в совместное использование каталога C:\letters под сетевым именем secretary и задания комментария к этому ресурсу служит следующая команда:

NET SHARE SECRETARY=C:\LETTERS /REMARK:"Переписка."

Для прекращения совместного использования каталога C:\letters служит команда

NET SHARE SECRETARY / DELETE

ИЛИ

NET SHARE C:\LETTERS /DELETE

Команда NET USER

Добавлять, редактировать или просматривать учетную информацию заданного пользователя из командной строки можно с помощью команды net User (или net users). Использование этой команды в пакетных файлах может намного облегчить процедуру ввода учетных записей пользователей.

Команда net user может задаваться в трех вариантах:

NET USER [пользователь [пароль|*][параметры]][/DOMAIN]

NET USER пользователь [пароль|*] /ADD [параметры] [/DOMAIN]

NET USER пользователь [/DELETE][/DOMAIN]

Запушенная без параметров утилита net user выводит список всех пользователей, зарегистрированных на данном компьютере.

Параметр *пользователь* обозначает логическое имя пользователя, учетная запись которого добавляется, редактируется или просматривается. Имя может иметь до 20 символов в длину.

Параметр *пароль* позволяет производить присвоение или изменение пароля пользователя. Минимальная длина пароля должна соответствовать ограничению, установленному ключом /minpwlen команды NET ACCOUNTS. Пароль может иметь длину до 14 символов. Символ *, указанный вместо пароля, обеспечивает вывод приглашения для ввода пароля. При вводе пароля с клавиатуры символы на экран не выводятся.

Применение ключа /domain означает, что операции осуществляются на основном контроллере основного домена, которому принадлежит компьютер. Этот параметр имеет смысл только на рабочих станциях Windows NT, подключенных к домену сервера Windows NT. Сервер Windows NT, по умолчанию, осуществляет операции на основном контроллере домена.

Использование ключа /add позволяет добавить пользователя в базу данных учетной информации, а ключа /DELETE — удалить информацию о пользователе из этой базы данных.

Параметры команды net user могут состоять из одного или нескольких ключей, описанных ниже.

Использование ключа /ACTIVE:[NO|YES] позволяет блокировать (NO) или активизировать (YES) учетное имя пользователя. Если пользователь блокирован, то он не сможет подключиться к ресурсам компьютера. По умолчанию используется значение YES (активен).

Ключ /COMMENT: "текст" применяется для задания комментария к пользовательской записи. Длина этого комментария может составлять до 48 символов. Текст заключается в кавычки.

Ключ /COUNTRYCODE: nnn используется для указания кода страны, определяющего файлы, которые применяются при выводе справочной информации и сообщений об ошибках. Нулевое значение ключа обозначает код страны, используемый по умолчанию.

Задать период действия учетной информации о пользователе можно с помощью ключа /EXPIRES: [дата | NEVER]. Если задан параметр дата, то учетная информация о пользователе будет действовать ограниченный период времени, иначе — без ограничений. Дата может задаваться в формате мм/дд/гг, дд/мм/гг или мм,дд,гг, в зависимости от кода страны. Следует иметь в виду, что дата задает день, когда срок действия учетной записи пользователя истечет. Месяц может задаваться числом, полным именем или трехбуквенным сокращением. Год может вводиться двумя или четырьмя цифрами. В качестве разделителей следует использовать запятую или косую черту, но не пробелы.

Применение ключа /FULLNAME:"имя" задает действительное имя пользователя, а не его логическое имя. При этом заданное имя заключается в кавычки.

Основной (домашний) каталог пользователя можно задать, указав ключ

/HOMEDIR:путь. Отметим, что параметр *путь* должен задавать существующий каталог.

Используя ключ /HOMEDIRREQ: [YES | NO] можно установить, обязательно (yes) или нет (no) задание основного каталога пользователя.

Следующие два ключа связаны с паролями пользователей. Ключ /PASSWORDCHG: {YES | NO} устанавливает, допускается (yes) или нет (no) изменение пароля самим пользователем. По умолчанию используется yes (допускается).

Ключ /PASSWORDREQ:[YES | NO] задает, является обязательным (yes) или нет (no) использование пароля. По умолчанию пароль обязателен (yes).

При использовании ключа /PROFILEPATH: [nymь] устанавливается путь для файла профиля подключения пользователя.

Для редактируемого или добавляемого пользователя можно задать интервалы времени, в течение которых ему разрешено подключение к компьютеру. Это делается с помощью ключа /ТІМЕS: [Время | ALL]. Значение времени может задаваться в формате день [-день], [день [-день]], час [-час], [час [-час]], с интервалом в 1 час. Дни могут быть полными или сокращенными (Пн, Вт, СР, Чт, Пт, Сб, Вс или М, Т, W, Тh, F, S, Su, в зависимости от того, какая версия Windows установлена: русифицированная или оригинальная). Часы могут быть в 12-ти или 24-часовом формате. Для 12-часового формата используются обозначения ат, рт или а.т., р.т. Параметр аll отменяет ограничения на время подключения. Пустое значение не позволяет пользователю подключаться никогда. Дни и часы разделяются запятыми, отдельные интервалы — точкой с запятой (например, пн,4АМ-5РМ;Вт,1РМ-3РМ). Пробелы в этом ключе не допускаются.

В учетной информации пользователя может иметься комментарий, который добавляется или изменяется при использовании ключа /USERCOMMENT:"текст". Текст комментария нужно вводить в кавычках.

Для заданного пользователя можно указать до восьми имен рабочих станций, с которых он может входить в сеть. Для этого применяется ключ /WORKSTATIONS: [КОМПЬЮТЕР[,...] |*]. Элементы списка разделяются запятыми. Если в ключе /worstations список компьютеров не задан, или задан звездочкой *, то пользователю разрешается входить в сеть с любого компьютера.

Например: вывести информацию о пользователе popovav можно следующей командой: NET USER popovav

Для добавления учетной записи пользователя Ивана Иванова с правом на подключение с 8 до 17 часов с понедельника по пятницу с обязательным паролем и полным именем пользователя можно использовать следующую команду:

NET USER ivanov ivanov /ADD /PASSWORDREQ:YES /TIMES:Пн-Пт,8:00-17:00 /FULLNAME:"Иван Иванов"

Логическое имя пользователя (ivanov) вводится во второй раз в качестве пароля.

Указания по выполнению

Задание 1 Изучение возможности команды route.

Добавьте статический маршрут до сервера с единичным значением метрики и занесите в отчёт получившуюся таблицу маршрутизации. Опишите назначение и возможности команды.

Задание 2. Получить список доменов, компьютеров или общих ресурсов на данном компьютере с помощью команды Ne view.

Задание 3. Проверьте информацию для сервера и станции - >net accounts

Задание 4. Изучите возможности команды net используя её расширения: computer, config, name, statistics, send, time. Выполните в командной строке все команду net со всеми ее раширениями. Проанализируйте полученный результат.

Руководство к выполнению

Команда

net help - выводит список всех возможных команд net.

Команда

net help имя команды - выводит справку о назначении и параметрах данной команды.

Содержание отчета

- 1. Цель
- 2. Результат выполнения заданий №№ 1-4, дополненные соответствующими скриншотами.
 - 3. Выводы

Контрольные вопросы

- 1. Возможности команды net используемой с различными расширениями.
- 2. Какая сетевая команда используется для создания учетной записи пользователя?
- 3. Какая сетевая команда используется для создания локальной группы (глобальной группы)?
- 4. Какой командой можно добавить пользователя в группу?
- 5. Какая команда позволяет просмотреть настройки входа в сеть?
- 6. Какой командой можно изменить длину пароля?
- 7. Какая команда позволяет объявить ресурс общим? Каков синтаксис этой команды?
- 8. Какая команда позволяет получить доступ к общему ресурсу

Лабораторная работа № 13 Организация почтового ящика

Цель: получить практические навыки работы с общедоступными почтовыми серверами для подготовки, передачи, приема и обработки электронных писем.

Ход работы:

- 1. Изучить теоретическийматериал.
- 2. Выполнить задания в соответствии суказаниями.
- 3. Оформить отчет по лабораторной работе в соответствии с требованиями (содержание отчета см.ниже).
 - 4. Подготовить ответы на контрольные вопросы (устно)

Пеоретический материал:

Электронная почта — одна из наиболее распространенных и популярных функций компьютерных сетей, обеспечивающая обмен сообщениями между пользователями сети.

Порядок использования электронной почты во многом сходен с обычной почтой. Роль почтовых отделений играют узлы сети Интернет, на которых абонентам организуются специальные почтовые ящики. По электронной почте можно пересылать не только текстовые сообщения, но и готовые файлы, созданные в любых других программах.

При пересылке сообщений по электронной почте необходимо указывать адрес получателя в сети Интернет, который имеет следующую структуру:

Работа с электронной почтой на почтовых WWW-серверах

Существует большое количество WWW -серверов, которые предлагают завести бесплатный почтовый ящик и позволяют работать с почтой, используя только браузер. Чтобы получить бесплатный почтовый ящик на таком сервере, необходимо зарегистрироваться. Для этого нужно заполнить несколько обязательных полей – ввести свой логин, пароль, возраст, пол и т.д. В случае успешной регистрации, за Вами будет закреплен бесплатный почтовый электронный адрес.

Такое использование почты имеет определенные достоинства. Можно легко менять провайдеров, не меняя свой адрес электронной почты. Можно просматривать почту с любого компьютера, подключенного к Интернету.

Разумеется, у такого способа есть и свои недостатки. вы не можете при работе с почтой через браузер минимизировать время подключения к Интернету в той мере, в какой это позволяют почтовые программы. Кроме того, общедоступные почтовые сервера часто перегружены.

Указания по выполнению

- 1. Запустить браузер, выполнить поиск бесплатных почтовых Web- серверов. Найти среди нихрусскоязычные.
- 2. В адресной строке браузера ввести адрес любого почтового Web-сервера, например, mail.ru
 - 3. Произвести регистрацию почтовогоящика.
 - 3.1. Познакомиться с правилами работы с электроннойпочтой.
 - 3.2. Выбрать себе имя и пароль, сформулировать вопрос для подсказкипароля.

Рекомендации. Имя, пароль и сведения о себе вводить на английском языке. Вопрос сформулировать так, чтобы ответ на него можно было дать в цифровой форме или латинскими буквами.

- 4. Войти в почтовый бокс, познакомиться с меню почтовойслужбы.
- 5. Написать письмо преподавателю (soldatenkomn@gmail.com) с сообщением о том, что

Вы произвели регистрацию. Заполнить поле Тема, например, Приветствие. Отметить флажок для сохранения копии отправленного письма. Отправить письмо. Завершить работу с почтовымсервером. Поменять пароль для входа в свой почтовый ящик. Вновь запустить почтовую службу и войти в почтовый бокс, смоделировав ситуацию, при которой Вы забыли свой пароль. Выбрать или ввести свой вопрос, ответить на него и поменятьпароль.

- 6. Выполнить настройку своего почтовогоящика.
- 6.1. Создать автоподпись для своихписем.
- 6.1.1. Войти в меню "Настройки" Вашего почтового бокса. Найти и заполнить форму для создания автоподписи. В подпись включить добрые пожелания, Вашу фамилию, имя и номер учебнойгруппы.
 - 6.1.2. Установить флажок для автоматической вставки подписи в Вашиписьма.
 - 6.1.3. Сохранить"Настройки".
 - 7. Подготовить и отправить письмо несколькимадресатам
- 7.1. С помощью любого редактора (Блокнота или Word) написать письмо своим друзьям и коллегам с сообщением о Вашей готовности вступить с ними в немедленную переписку. Сохранить письмо в своей папке (на жесткомдиске).
- 7.2. В окне своего почтового ящика вызвать команду "Написать письмо". Текст письма скопировать из ранее подготовленного документа. Проконтролировать вставку автоподписи. Проверитьорфографию.
- 7.3. Заполнить адресное поле адрес одного из Ваших друзей, остальные адреса указать в поле"Копия".
 - 7.4. Заполнить поле для темыписьма.
 - 7.5. Установить флажок "Сохранить в черновиках" и отправитьписьмо.
 - 8. Научиться работать с папками Вашего почтовогобокса
 - 8.1. Создать новую папку в почтовом боксе, дать ей имя"Учебная".
- 8.2. Проверить папку "Входящие" на наличие новых писем. Переместить учебные письма в созданную папку.
- 8.3. Просмотреть содержимое папки "Черновики". Убедиться в наличии там копии отправленногописьма.
 - 9. Научиться работать с адреснойкнигой
 - 9.1. Проверить папку "Входящие" на наличие новойпочты.

При наличиипочты:

- 9.1.1. Прочесть письмо. Занести адрес Вашего корреспондента в адресную книгу. Обязательно заполнить поле "Комментария" (например, "Мой соученик, контактный телефон ит.п.").
 - 9.1.2. Переместить почту, связанную с занятиями, в папку"Учебная".
- 9.2. Ответить на все письма (например, сообщить номер своего контактного телефона), воспользовавшись средствами адресной книги для заполнения полей "Адрес" и "Копия". Составить текст письма и проверитьорфографию.
 - 9.3. Отправитьписьмо.
 - 10. Научиться прикреплять файлы кписьму.
- 11.1 Подготовить файл для прикрепления к письму. Это может быть рисунок или документ Word или таблица Excel. Сохранить файл на своем диске или в своей папке. Размер файла не должен превышать 30 кбайт.
 - 11.2. Вновь активизировать почтовую программу и войти в свойбокс.
 - 11.3. Подготовить письмо, прикрепить к нему файл и отправить нескольким абонентам.
 - 10.1. Научиться работать с прикрепленнымифайлами.
- 10.2. Проверить почту, обратить внимание на то, как отображается наличие прикрепленного к письмуфайла.

- 10.3. Прочитать письмо и познакомиться с меню работы с вложенными (прикрепленными)файлами.
 - 10.4. "Скачать" файл на диск, в своюпапку.
- 10.5. Сохранить в этом же файле (скопировать через буфер) основной текст письма и адрес Вашегокорреспондента.
- 11. Продемонстрировать преподавателю состав Вашего почтового ящика, папку "Учебная", адресную книгу и сохраненныйфайл.

Содержание отчета

- 1. Цель
- 2. Этапы создания почтовогоящика
- 3. Настройка почтового клиента
- 4. Выволы

Контрольные вопросы

- 1. Преимущества электроннойпочты.
- 2. Опишите электронный почтовыйящик
- 3. Адрес электронной почты: состовляющие. Приведите пример.
- 4. Что не рекомендуется указывать впароле?
- 5. В каком режиме чаще осуществляется работа с электроннойпочтой?
- 6. Как работать с адресной книгой?
- 7. Как переложить письмо в другую папку?
- 8. Как прикрепить файл к письму, какие ограничения накладываются на прикрепляемые файлы?
- 9. Какие сервисные услуги предлагает выбранный почтовый сервер по обработке почтовогосообщения?
- 10. Какие почтовые серверы вам известны?
- 11. Какие сервисные услуги предлагает выбранный почтовый сервер по обработке почтового сообшения?

Лабораторная работа № 14 Организация работы с облачными технологиями

Цель: познакомиться с облачными сервисами на примере сервисов Google, отработать навыки работы с облачными технологиями.

Ход работы:

- 1. Изучить теоретическийматериал.
- 2. Выполнить задания в соответствии суказаниями.
- 3. Оформить отчет по лабораторной работе в соответствии с требованиями (содержание отчета см.ниже).
 - 4. Подготовить ответы на контрольные вопросы (устно)

Пеоретический материал

Облачный сервис, или как чаще его называют — облачное хранилище, услуга, предоставленная какой-либо организацией, которая выделяет для каждого пользователя отдельное пространство (в небольшом объеме, но при этом бесплатно) на сервередля хранения различной информации, включая видео и аудио файлы, документы и прочее. Пользователю достаточно загрузить данные с помощью программы (клиента) на облачный сервер и они будут доступны ему с других компьютеров, так же такие сервисы доступны для смартфонов.

Облачные сервисы хранения файлов — это современный способ обмена информацией через Интернет.

Облачное хранилище данных (англ. cloudstorage) — модель онлайн–хранилища, в котором данные хранятся на многочисленных распределённых в сети серверах, предоставляемых в пользование клиентам. При этом пользователь сервиса не обременен вопросами покупки и настройки специализированного оборудования, а за безопасность и целостность данных отвечает поставщик услуг.

Сценарии использования

Сервисы облачного хранения данных синхронизируют (копируют) файлы с вашего компьютера в «облако», т.е. на некоторые защищенные серверы в Интернет и предоставляют круглосуточный доступ к ним из любой точки планеты (при условии наличия доступа в Интернет). Кроме того, данные сервисы позволяют синхронизировать состояние нескольких компьютеров, создавая некоторое подобие «сетевой общей папки». Первым действительно популярным облаком для файлов стал проект Dropbox, а история его появления отлично иллюстрирует новый подход к хранению и обмену информацией:

Изначально идея родилась у основателя компании Дрю Хаустона во время автобусной поездки из Бостона в Нью-Йорк. Чтобы не скучать в пути, Хаустон взял с собой ноутбук, но забыл флешку. В итоге ему нечем было заняться с пустым ноутбуком, раздосадованный, он начал прямо в автобусе писать приложение для синхронизации доступа к файлам через интернет.

Очень часто облака используют для создания резервных копий важных документов, настроек и т.д. Например, AppleiCloud позволяет моментально восстановить на новом компьютере Mac, iPhone или iPad контакты, заметки, настройки почты, календари, документы некоторых программ и даже закладки вбраузере.

Но кроме <u>простого файлового хранилища</u>, облачные сервисы дают возможность пользователю пользоваться различными приложениями удаленно, при этом не загружая

программу на компьютер — все вычисления будут происходить на сервере (или большая часть). Это могут быть офисные приложения (GoogleDocs) — следовательно не надо загружать MSOffice на компьютер, так как всю работу можно проделать в окне браузера.

Если есть смартфон на Android, то его можно использовать в качестве проигрывателя онлайн музыки, опять же из вашего хранилища. Кстати, есть и игровые облачные сервисы, которые еще только развиваются и имеют много негативной критики в свой адрес, в особенности требуется высокоскоростное подключение к интернету (минимум 1-2 мбит/сек). Но из-за своей оригинальной идеи проект имеет будущее.

Следовательно, **назначение облачного сервиса** — избавление пользователя от внешних носителей, таких как диски, флешки, внешние жесткие диски. Все эти данные можно хранить на облаке и иметь к ним доступ со всех ПК и смартфонов.

Преимущества:

- 1. Всегда есть доступ к данным с любого места, где есть интернет. Его можно использовать как резервное хранилище данных как для сайта, так и для документов в случае установки новой ОС. Так же можно отправить файл с хранилища другому пользователю, который так же может просмотреть его, не загружая наПК.
- 2. Нет зависимости от мощностей компьютера и объема жесткого диска все обрабатывается удаленно, а вы лишь получаетерезультат.
- 3. Так как облачных сервисов становится все больше, то и растет конкуренция среди них. А для простого пользователя конкуренция является важнейшим свойством чем больше конкуренция на рынке (тоже касается облачных сервисов), тем качественнее стараются сделать товар и дешевле ее предоставить. Можно подобрать себе одно или несколько файловых хранилищ облака для различныхнужд.

Недостатки:

- 1. Прямая зависимость от интернета все, что бы вы не делали, происходит через интернет подключение, будь то загрузка файлов, отправка, работа с приложением и т.д. Не факт, что интернет разорвет соединение в любой момент и данные могут потеряться. Однако это очень редкий случай, да и браузер не настолько глуп, чтобы закрыть себя после отключения от облачногосервиса.
- 2. Иногда <u>размера файлового хранилища не всегда хватает</u> и более емкое пространство уже бывает платным. Хотя это символический недостаток нужно довольствоваться что предоставили, причем для бесплатногопользования.

Основные услуги, которые предоставляют облачные технологии:

Bce как услуга (Everything as a Service) – пользователь получает в доступ все возможности: от програмного обеспечения, до управления бизнесс-процессами.

Инфраструктура как услуга (Infrastructure as a Service) – доступна только компьютерная инфраструктура, которую каждый пользователь настраивает под себя. Как правило., это - виртуальные платформы, соединённые в сеть.

Платформа как услуга (Platform as a Service) – в доступе - компьютерная платформа с операционной системой и ΠO

Программное обеспечение как услуга (Software as a Service) — доступно ПО, фактически развернутое на удлённых внешних сетях,. Пользователь платит только за фактическое пользование программным обеспечением. Вопросы лицензирования решаются поставщиком услуги. пример

Рабочее место как услуга (Workplace as a Service) – создание полноценных рабочих с доступами к необходимому для сотрудников ПО.

Данные как услуга (Data as a Service) – место на дисковом пространстве для хранения информации.

Безопасность как услуга (Security as a Service) – даёт возможность развертывать необходимые пользователю продукты для безопасности переписки, локальных данных.

Соответственно, и облачные сервисы, предоставляющие данные услуги можно разделить на три вида:

Публичное «облако» - инфраструктура, которая доступна множеству компаний. Пользователи не могут управлять таким облаком. Вся ответственность лежит на владельце сервера.

Абонентом может стать любая компания, либо индивид.

ПУбличные облачные сервисы позволяют клиентам быстро и, сравнительно легко развернуть веб-сайт или бизнес-систему с большими возможностями масштабирования. Публичные облака наиболее популярны на данный момент.

Примеры:

Amazon EC2, Google Apps, Microsoft Office Web.

Частное «облако» - структура, данные в которой хранятся только от одной частной компании. Компания может управлять облаком самостоятельно. а может поручить внешнему оператору. Такая структура наиболее безопасна, но и очень затратна по настройке и содержанию. Оборудование может храниться как у самой компании, так и у оператора.

Гибридное «облако» - наиболее мобильная одновременно безопасная инфраструктура. Удобна для компаний с сезонными всплесками активности клиентов.

Данные, хранящиеся в частном облаке переносятся на публичное. если частное облако не справляется с объёмом информации. Доступ к ресурсам компании может быть организован через публичное облако.

Указания по выполнению

Задание. Зарегистрируйте аккаунт в системе Google. Создайте документы в облачном хранилище. Создайте блог-портфолио студента.

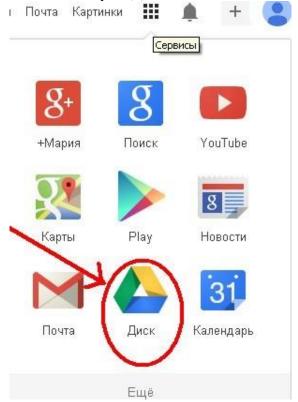
Регистрация в Google

Компания Google – один из мировых лидеров разработки программного обеспечения, внедряющих информационные технологии в повседневную жизнь человека.

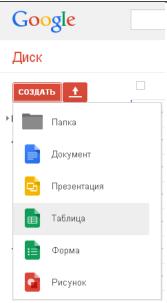
После регистрации в Google (получения почтового адреса @gmail.com) Вы получите доступ к различным сервисам компании и сможете приступить к освоению новейших технологий обмена информацией в Интернет.

При создании аккаунта Google Вам необходимо выбрать имя пользователя, которое также является адресом электронной почты @gmail.com. В сфере профессиональных коммуникаций, в том числе в процессе обучения, общепринятой нормой считается использование адресов электронной почты, содержащих в себе реальные данные о владельце, а не вымышленные имена. Обычно в адрес почты включают имя и фамилию, например: maria.ivanova@example.com или sjobs@apple.com.

Регистрация нового аккаунта Google

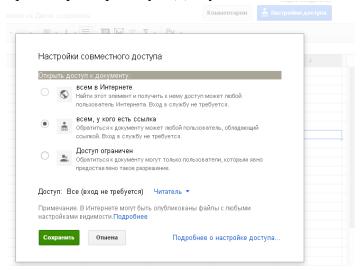

- 1. Зайдите на сайт google.com. Страница Google России находится по адресу http://google.ru.
- 2. Щелкните по кнопке «Войти» в правом верхнемуглу.
- 3. Далее войдите в свой аккаунт или нажмите на кнопку ЗАРЕГИСТРИРОВАТЬСЯ, если у вас его нет.
- 4. Заполните предлагаемые поля:
 - Имя
 - Фамилия
 - Имяпользователя
 - Пароль и подтверждениепароля
 - Дополнительный адрес электронной почты (можно указать тотадрес почты,

который ужесуществует)

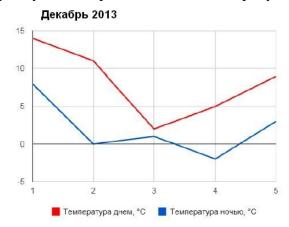

- Дата рождения. Вводя дату рождения, пожалуйста, ответьте честно. Если на основе введенных данных компания Google выяснит, что ваш возраст менее 14 лет, то, в соответствии с условиями использования, с которыми вы согласитесь ниже, учетная запись будет ограничена, а вы не сможете выполнить задания по данной дисциплине.
- **Номер телефона.** Настойчиво рекомендуем указать номер мобильного телефона, т.к. при помощи смс-сообщения можно будет легковосстановить пароль. Компания Google не рассылает рекламныесообщения.
- Введите символы на картинке, доказывающие, что Вы неробот.
- По возможности ознакомьтесь и согласитесь с условиями использования и политикой конфиденциальности Google, установив галочку всоответствующем поле.
- 5. Убедитесь, что появилось сообщение об успешном создании аккаунта.
- 6. Добавьте к своему профилю фотографию (кнопка «Добавить фото», выберите его на компьютере).
- 7. Для изменения настроек или выхода из аккаунта щелкните по вашей фотографиив правом верхнемуглу.

Создание табличного документа.

8. После входа вы увидите список сервисов, перечисленных в горизонтальном меню в верхней части экрана. Нажмите на пунктДиск.


9. Для создания нового документа нажмите кнопку Создать и выберите соответствующий тип документа.

Создайте новую таблицу «Дневник погоды». В таблице ниже приведен пример данных изаполнения


Число	Температура	Температура	Осадки	Облачность
	днем, °С	ночью, °С		
1	14	8	Слабый дождь	Пасмурно
2	11	0	Снег с дождем	Переменная облачность
3	2	-1	_	Пасмурно
4	5	-2	_	Переменная облачность
5	9	3	_	Пасмурно

- 10. Для редактирования названия документа нажмите на него и напишите новое название в открывшемся диалоговом окне.
- 11. Проверьте уровень доступа к документу: найдите справа вверху кнопку Предоставить доступ, дальше выберите параметр доступа Доступ имеет любой владеющийссылкой.

- 12. Переименуйте «Лист 1»в «Декабрь 2013» и внесите в него данные о погоде за начало декабря в Белгороде. Для переименования Листа щелкните по нему пкм и выберите пунктПереименовать.
- 13. Для поиска данных о погоде за прошедшие дни можно воспользоваться поиском. Такие данные есть на многихметеосайтах.
- 14. Применяя условное форматирование для температуры: выделите отрицательные и

- нулевую температуры синим цветом, положительные –красным. Задайте правило условного форматирования для ячеек температуры: выделите нужные ячейки, щелкните пкм и выберите пункт Условное форматирование, задайте правило меньше 0- цвет текста синий, больше 0 цвет текстакрасный.
- 15. Добавьте в таблицу новый лист «Декабрь 2012» и заполните данные аналогичные предыдущему листу. Для добавления нового листа нажмите на знак + слева внизу экрана.
- 16. Защитите этот лист от дальнейшего редактирования. Для защиты листа от редактирования щелкните по его ярлыку пкм и выберите Защитить лист, укажите тип защиты Только я . В дальнейшем только Вы сможете редактировать в немданные.
- 17. Создайте новый лист, назовите его «Графики» и постройте на нем графики дневных и ночных температур текущего и прошлого года, как нарисунке

Вставить график можно воспользовавшись Вставка \to Диаграмма \to в подменю Диаграммы выберите диапазон и нужный тип графика.

18. Отредактируйте диаграмму так, чтобы она выглядела, как на примере, воспользовавшись расширенным редактированием, которое доступно через контекстноеменю.

Создание формы

19. Чтобы перейти из открытого Google документа к общему списку документов пользователя нажмите на стрелочку слева от названия документа, которая появится,

Погода ☆ Файл Правка

если на название документа в левой верхней части экрана навести курсор

- 20. Создайте новую форму, назовите ее «Анкета». Первый вопрос обязателен —это имя опрашиваемого. Второй обязательный вопрос —возрастная категория: от 16 до 20, от 21 до 25, от 26 до 30, старше 30. В продолжение анкеты придумайте еще несколько вопросов на произвольную интересующую Вас тему. Например: кино какого жанра Вы предпочитаете, какую музыку слушаете, каков любимый напиток и т.п. Общее количество вопросов должно быть не менее 7. Используйте в своей анкете различные типы вопросов: текст, абзац, один из списка, несколько из списка, выпадающий список. Часть вопросов оставьте необязательными, другие пометьте обязательными для ответов.
- 21. Введите первый вопрос: Заголовок вопроса—Ваше имя, Тип вопроса—Текст. Поставьте галочку напротив пункта Сделать этот вопрособязательным.
- 22. Введите второй вопрос: Заголовок вопроса –Возраст, Тип вопроса–Один изсписка, задайте варианты ответа указанные в задании. Поставьте галочку напротив пункта

Сделать этот вопрособязательным.

- 23. Выберите стиль оформления опроса, сохраните документ. Стиль оформления можно поменять щелкнув по панели Тема вверхуэкрана.
- 24. Просмотрите результат и сами заполните анкету. Для заполнения анкеты выберите в меню Форма \to Перейти к активной форме, для редактирования формы Форма \to Изменитьформу.
- 25. Проверьте, что документ доступен для ответов пользователей. Вставьте ссылку на опрос в текстовый файл «Анкеты группы». Перейдите к активной форм е и скопируйте ссылку на опрос. Вставьте ее в текстовый файл «Анкеты группы» и поместите на флешку. Напишите в файле свою фамилию, имя затем вставьте гиперссылку.
- 26. Поучаствуйте в заполнении анкет других студентов Вашейгруппы.
- 27. Заполните анкету по адресу из фалаАнкетирование.txt.
- 28. После того, как будут получены ответы от ваших одногруппников, просмотрите сводку и полную таблицу ответов. После заполнения формы хотя бы пятью студентами группы просмотрите результаты, для этого войдите в меню Форма Показать сводкуответов

Создание блога

На данный момент рынок блоговых сервисов очень разнообразен, а общепризнанными лидерами считаются ресурсы Wordpress, Myspace, LiveJournalu Blogger.

Blogger— один из первых блоговых сервисов, основан 1999 году, куплен компанией Google в 2003. Дополнительная регистрация не требуется, так как работа в Blogger производится через аккаунт Google.

Выбор адреса и названия

В ходе создания блога Вам необходимо выбрать его название и адрес. В названии отразите основное назначение данного ресурса и автора, например: Портфолио Дмитрия Петрова или Веб-портфолио Марии Ивановой. В адресе так же укажите Фамилию иИмя.

В системе Blogger по умолчанию при публикации комментария посетитель блога должен ввести искаженный текст с картинки, доказав что он не робот. Обычно данный механизм защиты используют для предотвращения спамерской активности в комментариях популярных блогов.

Содержание отчета

- 1. Цель
- 2. Paбота в GoogleDisk.
- 3. Выволы

Контрольные вопросы

- 1. Понятие облачной технологии
- 2. Веб-сервисы, характеристика
- 3. Типы облаков
- 4. Уровни облачных сервисов
- 5. Отличия сервисов
- 6. Преимущества облачных вычислений

Лабораторная работа № 15 Организация работы в сети Internet

Цель: отработать навыки настройки браузера, работы в сети Internet.

Ход работы:

- 1. Изучить теоретическийматериал.
- 2. Выполнить задания в соответствии суказаниями.
- 3. Оформить отчет по лабораторной работе в соответствии с требованиями (содержание отчета см.ниже).
 - 4. Подготовить ответы на контрольные вопросы (устно)

Пеоретический материал:

Средства просмотра Web-страниц

Документы *Интернета*, предназначенные для отображения в электронной форме, можно просмотреть с помощью *Web-браузера*, установленного на компьютере пользователя. *Браузер* (*browser*) — программа для отображения и работы с гипертекстовыми документами.

Браузер - программное обеспечение, сочетающее в себе легкость в использовании и богатство возможностей. Браузер не только открывает пользователю мир гипертекстовых ресурсов Всемирной Паутины. Он также может работать и с другими службами Сети, такими как FTP, Gopher, WAIS и т.д.. Вместе с браузером на компьютер обычно устанавливается программа для пользования службами электронной почты (e-mail) и новостей (news). По сути дела, браузер является основной программой для доступа к службамСети.

Основные функции браузеров:

- установление связи с *Web-сервером*, на котором хранится документ, и загрузка всех компонентов комбинированногодокумента;
- интерпретация тегов языка *HTML*, форматирование и отображение *Web-страницы* в соответствии с возможностями компьютера, на котором браузерработает;
- предоставление средств для отображения мультимедийных и других объектов, входящих в состав *Web-страниц*, а также механизма расширения, позволяющего настраивать программу на работу с новыми типамиобъектов;
- обеспечение автоматизации поиска Web-страниц и упрощение доступа к Webстраницам.
- предоставление доступа к встроенным или автономным средствам для работы с другими службами*Интернета*.

В настоящее время существует достаточное количество *Web-браузеров*. Наиболее известными являются *Internet Explorer*, *Netscape Navigator*, *Opera*, *No Trax* идр.

Работа с гиперссылками

Навигация по *Internet* чаще выполняется с помощью *гиперссылок*. При отображении *Web-страницы* гиперссылки выделяются цветом (обычно синим) и подчеркиванием. При наведении на нее указателя мыши он принимает форму кисти руки с вытянутым указательным пальцем, а сама гиперссылка при соответствующей настройке браузера изменяет цвет.

Адрес URL, на который указывает ссылка, отображается в строке состояния. При щелчке на гиперссылке соответствующая Web-страница загружается вместо текущей. Если гиперссылка указывает на произвольный файл, его загрузка происходит по протоколу FTP.

Гиперссылки бывают: текстовые, графические (представленные рисунком) и изображения-карты, объединяющие несколько ссылок в рамках одного изображения. Для просмотра ссылок на открытой Web-странице удобно использовать клавишу TAB. При ее нажатии фокус ввода (пунктирная рамка) перемещается к следующей ссылке. Перейти по ссылке можно, нажав клавишу ENTER. При таком подходе последовательно перебираются текстовые и графические ссылки, а также отдельные области изображений-карт.

Дополнительные возможности использования гиперссылок предоставляет их контекстное меню. Чтобы открыть новую страницу, не закрывая текущей, применяют команду *Открыть в новом окне*. В результате открывается новое окно браузера.

Разные операции, относящиеся к текущей странице и ее элементам, удобно осуществлять через контекстное меню. Так, например, рисунок, имеющийся на странице, можно: сохранить как файл (Сохранить рисунок как); использовать как фоновый рисунок (Сделать рисунком рабочего стола) или как активный элемент (Сохранить как элемент рабочего стола).

Если рисунок выполняет функции графической ссылки, к нему можно применять как команды, относящие к изображению, так и команды, относящиеся к ссылке.

Команды меню:

- Φ айл позволяют: создать новое окно, сохранить открытый документ на своем компьютере, распечатать его, включить или выключить режим автономной работы, а также завершить работу спрограммой.
- *Правка* позволяют: копировать фрагменты документа в буфер обмена, искать текст на *Web-странице*.
- \bullet Bud позволяют: включать/выключать отображения служебных элементов окна (панелей инструментов, дополнительных панелей, строки состояния), выбирать шрифт и кодировкусимволов.
- Избранное позволяют вести список регулярно посещаемых страниц и осуществлять быстрый доступ кним.
- *Сервис* позволяют выполнять переход к использованию программ для работы с другими службами *Интернета*, настраиватьбраузер.

Настройка свойств InternetExplorer

Для эффективной и комфортной работы в *Интернете* необходима настройка браузера. Параметры оптимальной настройки зависят от многих факторов:

- свойств видеосистемыкомпьютера;
- производительности действующего соединения сИнтернетом;
- содержания текущего Web-документа;
- личных предпочтений индивидуальногопользователя.

Начать настройку программы InternetExplorerможно:

- из самой программы Cepeuc o Ceoйcmeaoбозревателя.
- или Π анель управления \to значок Cвойстваобозревателя.

Открывшееся диалоговое окно отличается только названием (*Свойства обозревателя* и *Свойства: Интернет*).

Окно содержит шесть вкладок для настройки разных групп параметров:

- 1) вкладка Общиепозволяет:
- указать, какую страницу использовать в качествеосновной;

- задать объем дискового пространства для хранения временных файлов Интернета;
- удалить временныефайлы;
- управлять оформлением отображаемых Web-страниц;
- при помощи кнопки Цвета настраиватьцвета;
- при помощи кнопки Шрифты настраиватышрифты;
- при помощи кнопки *Оформление* задать принудительное использование параметров форматирования: цветов (флажок *Не учитывать цвета, указанные на веб-страницах*), начертаний шрифтов (*Не учитывать шрифты, указанные на веб-страницах*) и размеров шрифтов (*Не учитывать размеры шрифтов, указанные навеб-страницах*).
 - 2) вкладка Подключение позволяет:
- настраивать свойства соединения с *Internet*(доступны те же операции, что и при непосредственном использовании папки *Удаленный доступ ксети*);
 - указать, какое именно соединение должно использоваться при работебраузера;
- помощью переключателей можно задать режим отказа от автоматического подключения, стандартный режим подключения при отсутствии соединения или режим использования только одногосоединения.
- 3) вкладка *Программы* позволяет выбирать программы, используемые для работы в *Интернете*. Все виды программ, кроме календаря (для ведения списка дел, встреч, праздников и прочего), входят непосредственно в дистрибутивный пакет *InternetExplorer*.
 - 4) вкладка Безопасность:
- ullet предоставляет средства защиты от потенциально опасного содержимого Web- документов;
- позволяет указать *Web-узлы*, взаимодействие с которыми следует считать опасным, и запретить прием с нихинформации.
 - 5) вкладка Содержаниепозволяет:
 - ограничить доступ к узлам с неприемлемымсодержанием;
 - управлять использованием электронных сертификатов.
 - 6) вкладка Дополнительнопозволяет:
 - управлять отображением мультимедийныхобъектов;
 - использовать дополнительные настройкиоформления;
 - управлять режимом поиска Web-страниц, содержащих нужную информацию;
- соблюдать конфиденциальность работы с помощью средств шифрования использования электронных сертификатов и своевременного удаления временных файлов;
 - контролировать использование средств языкаJava.

Работа через прокси-сервер.

После загрузки веб-страницы браузер на время помещает ее и все ее элементы (картинки, анимации, звуковые файлы) в специальный буфер в памяти компьютера. Благодаря этому при повторном обращении она загружается очень быстро. Применительно к отдельному компьютеру место в оперативной памяти и на жестком диске компьютера, которое используется для хранения просмотренных веб-страниц, называется "кэш" (англ. cache). В рамках локальной сети организации часто организуют общий буфер, в который попадают веб-страницы, просматриваемые всеми компьютерами в локальной сети. Он носит название "прокси-сервер" (англ. proxy-server).

При запросе браузера на получение документа из сети прокси-сервер проверяет, нет ли уже в его кэше запрашиваемой информации. Если таковая имеется, то прокси-сервер производит сверку времени создания оригинального документа и его кэш-копии. Если они идентичны, то прокси-сервер просто отсылает браузеру копию из кэш. Такой порядок работы

значительно сокращает размер трафика, экономит ресурсы сети. Кроме того, при использовании прокси-сервера сокращается время ожидания запрашиваемой информации - наиболее часто запрашиваемые страницы загружаются на порядок быстрее. Современные прокси-серверы дополнительно обмениваются друг с другом информацией о хранящихся в них документах, за счет этого эффективность их использования существенно возрастает.

Чтобы настроить свой браузер для работы с прокси-сервером, нужно вызвать окно настроек через меню: Сервис — Свойства обозревателя..., и выбрать закладку Подключение. Нажать кнопку Настройка сети... и поставить галочку - Использовать прокси сервер. В поле ввода ниже необходимо ввести имя прокси-сервера и порт, через который будет осуществлятся обмен информацией с ним (эти данные пользователь получает от своего Интернет-провайдера).

В NetscapeNavigator и MicrosoftInternetExplorer предусмотрен также механизм для встраивания дополнительных возможностей независимыми производителями. Модули, расширяющие возможности браузера, называются плагинами (plug-in).

Браузеры работают на компьютерах под управлением самых разных операционных систем. Это дает основание для того, чтобы говорить о независимости Всемирной Паутины от типа применяемого пользователем компьютера и операционнойсистемы.

Поиск в Интернете

В Интернет обращаются за определенной информацией. Чтобы открыть нужную Webстраницу, надо иметь либо ее адрес, либо другую страницу со ссылкой на нее. Если нет ни того ни другого, обращаются к поисковым системам. Поисковая система представляет собой специализированный Web-узел. Поисковые системы классифицируются по методам поиска.

Поисковые серверы достаточно многочисленны и разнообразны. Принято различать поисковые индексы и каталоги.

Серверы-индексы работают следующим образом: регулярно прочитывают содержание большинства веб-страниц Сети ("индексируют" их), и помещают их полностью или частично в общую базу данных. Пользователи поискового сервера имеют возможность осуществлять поиск по этой базе данных, используя ключевые слова, относящиеся к интересующей их теме. Выдача результатов поиска обычно состоит из выдержек рекомендуемых вниманию пользователя страниц и их адресов (URL), оформленных в виде гиперссылок. Работать с поисковыми серверами этого типа удобно в том случае, если имеется четкое представление о предметепоиска.

Серверы-каталоги по сути дела представляют собой многоуровневую классификацию ссылок, построенную по принципу "от общего к частному". Иногда ссылки сопровождаются кратким описанием ресурса. Как правило, возможен поиск в названиях рубрик (категориях) и описаниях ресурсов по ключевым словам. Каталогами пользуются тогда, когда не вполне четко знают, что именно ищут. Переходя от самых общих категорий к более частным, можно определить, с каким именно ресурсом Сети следует ознакомиться. Поисковые каталоги уместно сравнивать с тематическими библиотечными каталогами или классификаторами. Ведение поисковых каталогов частично автоматизировано, но до сих пор классификация ресурсов осуществляется главным образомвручную.

Поисковые каталоги бывают общего назначения и специализированные. Поисковые каталоги общего назначения включают в себя ресурсы самого разного профиля. Специализированные каталоги объединяют только ресурсы, посвященные определенной тематике. Им часто удается достичь лучшего охвата ресурсов из своей области и построить более адекватную рубрикацию.

В последнее время поисковые каталоги общего назначения и индексирующие поисковые сервера интенсивно интегрируются, успешно сочетая их преимущества. Поисковые технологии тоже не стоят на месте. Традиционные индексирующие сервера ищут в базе данных документы, содержащие ключевые слова из поискового запроса. При таком подходе очень сложно оценить значение и качество ресурса, выдаваемого пользователю. Альтернативный подход - искать такие веб-страницы, на которые ссылаются другие ресурсы по данной тематике. Чем больше ссылок на страницу существует в Сети - тем больше шансов, что вы ее найдете. Такой своеобразный мета-поиск осуществляет поисковый сервер Google(http://www.google.com/)

Работа с поисковыми серверами не составляет большого труда. Наберите в адресной строке браузера адрес, и после загрузки поискового сервера в строке запроса наберите на нужном языке ключевые слова или фразу, соответствующие ресурсу или ресурсам Сети, которые вы хотите найти. Затем нажмите мышью на кнопку "Поиск" ("Search") и в рабочее окно браузера загрузится первая страница с результатами поиска.

В идеальном случае тот ресурс, который вы ищете, поисковый сервер поместит на первую страницу результатов поиска, и Вы сразу распознаете нужную ссылку по краткому описанию. Однако часто приходится просмотреть несколько ресурсов, прежде чем обнаруживается подходящий. Как правило, пользователь просматривает их в новых окнах браузера, не закрывая окно браузера с результатами поиска.

Ниже в таблице. приведен список некоторых наиболее известных поисковых серверов общего назначения. Все эти сервера в настоящее время предлагают и полнотекстовый поиск, и поиск по категориям, сочетая в себе, таким образом, достоинства индексирующего сервера и сервера-каталога.

Список наиболее популярных поисковых серверов общего назначения.

	померы образравания полити
Англоязычные	Русскоязычные
http://www.yahoo.com	http://www.yandex.ru
http://altavista.digital.com	http://www.rambler.ru
http://www.hotbot.com	http://www.aport.ru
http://www.infoseek.com	http://www.list.ru
http://www.northernlight.com	http://www.ru
http://www.google.com	

Различают следующие виды информационно-поисковых систем: юридические, отраслевые, электронные справочники, электронные обучающие системы.

К средствам поисковых систем относится язык запросов, он различен для разных систем, но имеет определенные характерные особенности. Рассмотрим язык запросов одной из популярных систем Япdex. Характерной особенностью этой поисковой машины является учет морфологии языка, т. е. поиск осуществляется по всем формам слова или слов в запросе. Например: если задано слово "лить", то в результате поиска будут предложены и документы со словами "льет". Стоит отметить, что не все поисковики обладают такой "способностью".

Таблица – Синтаксис языка запросов

Синтаксис языка Значение		Пример	
1	2	3	
!	Запрет всех словоформ	!интернет (из поиска будут исключены слова "интернет")	
+	Обязательное присутствие слов в	Полная+нагрузка (должны быть выбраны страницы, где встречается слово не только	

	найденных	"полная", но и обязательное условие	
	документах	наличия слова "нагрузка")	
-	Исключение слова	Электронные-лампы (будут исключены	
(пишется слитно с	из результатапоиска	документы где вместе встречаются эти два	
исключаемым словом)		слова)	
&	Обязательное	максимальная&полная&нагрузка	
	вхождение слов в		
	одно предложение		
	Поиск любого из	радиальная схема	
	заданных слов		
~	Требование	электронные~выпрямители (результаты	
	присутствияпервого	поиска не будут включать документы где в	
	слова в	пределах предложения встречаются оба	
	предложении без	слова)	
	второго		
&&,~~	Поиск в пределах	Техническая~~характеристика (результаты	
	документа	поиска не будут включать страницы где в	
		документе встречаются оба слова)	
6699	Поиск устойчивых	"технологическая схема" (учитывается	
	словосочетаний	строгая последовательность слов,	
		выражение "схема технологическая" будет	
		исключено)	
/	Показатель	электрические/1 машины (число после	
	расстояния между	значка показывает на каком расстоянии	
	словами в	должно находиться второе слово в	
	предложении	предложении)	
/(n m)	Ограничения по	номинальный/(-4 3) режим (слово "режим"	
	расстоянию, где n –	должно находиться в интервалах от 4 слов	
	минимальное, а m –	слева и до 3 слов справа)	
	максимальное		
	расстояние		
0	Поиск выражений	(электрические, частота)/+1 (генераторы,	
		двигатели) (результатами поиска будут	
		документы, включающие выражения	
		"электрические генераторы",	
		"электрические двигатели", "частота	
		генераторы", "частота двигатели")	
\$title	Поиск информации	\$title электрические машины (результатом	
	по названиям	будут документы где в качестве заголовка	
	заголовков	используются эти слова)	
\$anchor	Поиск информации	\$anchor электрические нагрузки (если в	
	по названию ссылок	документах в качестве гиперссылки	
		используется данный набор)	
\$Address	Поиск информации	\$Addressedu (будут предложены	
	по названиям	документы, где адреса сайтов включают	
	адресов	слово edu)	
#image="название	Поиск документов	#image="comp*" (запрос дает ссылки на	

сайта"	по именам	документы с изображениями компьютеров)
	графических файлов	
#keywords="ключевое	Поиск сайтов, где	#keywords="электричество" (будут
слово"	заданное слово	определены сайты, где слово выделено
	выделено в качестве	каким-либо образом)
	ключевого понятия	
#hint="подпись	Поиск по подписи	#hint="Электрооборудование" (будут
графического файла"	изображения,	заданы сайты, где встречаются не просто
	которое появляется	изображения электрооборудования, а
	при подведении	имеющие заданную подпись)
	мышки к активной	
	части экрана	

Указания по выполнению

Задание 1. Настройка и работа с браузером MS Internet Explorer.

- 1. Ознакомьтесь с содержанием пунктов менюбраузера.
- 2. Научитесь раскрывать окно браузера на весь экран и сворачивать его до прежнегоразмера.
 - 3. Научитесь раскрывать настройку домашней страницыбраузера.
 - 4. Научитесь раскрывать настройку временных файловИнтернет.
 - 5. Научитесь раскрывать настройку цветовгиперссылок.
 - 6. Научитесь раскрывать настройку вкладкиПрограммы.
 - 7. Научитесь раскрывать настройку вкладкиДополнительно.

Технология работы.

- 1. Для ознакомления с пунктами менюбраузера:
- запустите браузер І.Е. в автономном режиме (не входя в Интернет, т.е. не устанавливая связь с провайдером), щелкнув по соответствующему знаку на Рабочем столе, а затем выполнив команду Файл, Автономнаяработа;
- просмотрите названия содержания пунктов меню, а также назначение кнопок на панели управления (удерживая на них курсором более 1 секунды) для лучшей ориентации в функциях, выполняемых браузером. Часть функций стандартна для Windows-приложений, часть специфична длябраузера.
 - 2. Для изменения размеров окнабраузера:
- раскройте окно браузера на весь экран. Для этого выполните команду Просмотр, На весьэкран;
- вернитесь к прежнему размеру экрана. Для этого щелкните по кнопке «На весь экран» на панели инструментов в верхней частиокна.
 - 3. Для настройки домашней страницыбраузера;

Домашняя страница — это та страница, которая отображается при каждом запуске обозревателя InternetExplorer. Желательно, чтобы это была та страница, которую пользователь часто просматривает. В качестве домашней страницы можно также выбрать страницу, приспособленную для того, чтобы быстро находить любую необходимую информацию.

- Перейдите на страницу, которую следует открывать при каждом запуске InternetExplorer.
 - В меню Сервис выберите пункт Свойстваобозревателя.
 - Выберите вкладку Общие.
 - В группе Домашняя страница нажмите кнопку Стекущей.

- 4. Для настройки элемента Временные файлыИнтернета;
- на вкладке Общие щелкните по кнопке «Настройка». В появившемся окне просмотрите объем дискового пространства, выделяемого под временные файлы. Конечно, чем больше этого пространства, тем лучше для пользователя, но это зависит от свободного места на диске. Обычно размер этих файлов устанавливается в пределах 1-2%от объема диска. Если вы затрудняетесь выбрать нужный объем самостоятельно, то лучше оставить настройки поумолчанию;
- в окне «История» установите число 20 т.е. адрес любой открываемой вами Web-страницы будет храниться в журнале 20дней.
 - 5. Для настройки цветовгиперссылок:
 - на вкладке Общие щелкните по кнопке«Цвета»;
- в появившемся окне настройте цвет просмотренных ссылок. Для этого щелкните по соответствующему цветному прямоугольнику, в появившемся окне щелкните по понравившемуся цвету (желательно выбирать темные цвета они лучше видны на экране) и щелкните по кнопке<ОК>;
- аналогично настройте цвет просмотренных ссылок и ссылок, на которые наводится указатель мыши. При этом желательно, чтобы цветаотличались.
 - 6. Для настройки вкладкиПрограммы:
 - откройте вкладкуПрограммы;
 - установите программу OutlookExpress.
 - 7. Отключить графику для ускорения отображения Web-страниц.
- 1. В обозревателе InternetExplorer в меню Сервис выберите Свойства обозревателя.
 - 2. Перейдите на вкладкуДополнительно.
- 3. В группе Мультимедиа снимите один или несколько из следующих флажков: Отображать рисунки, Воспроизводить анимацию, Воспроизводить звуки, Воспроизводить видео.

Задание 2. Ознакомьтесь с основными принципами навигации в браузере Internet Explorer.

1. Создание своей папки в папке Избранное.

В пункте меню Избранное выберите функцию Добавить в избранное.... В появившемся окне нажмите кнопку Добавить в ». На появившемся продолжении поля окна нажмите кнопку Создать папку.... В появившемся окошке введите имя своей папки (например, Ваше имя или фамилия). Нажмите кнопку ОК. Ваша папка будет внесена в список "избранных" папок. Нажмите кнопку Отмена. Окно будетзакрыто.

2. Добавление в свою папку адреса текущейстраницы.

Щелкните правой кнопкой мыши внутри основного окна браузера (на открытой HTML-странице). В появившемся контекстном меню выберите функцию Добавить в избранное.... В появившемся окне нажать кнопку Добавить в ». В появившемся списке папок выберите свою и щелкните по ней. Значок "закрытой" папки превратится в "открытую". Нажмите ОК. Окно закроется.

Вернитесь с помощью клавиши Назад или Вперед в предыдущую страницу. Также переместите ее в свою папку в "Избранное".

3. Открытие файлов из папкиИЗБРАННОЕ.

В пункте меню Избранное установить курсор на свою папку. Из появившегося сбоку списка выберите ту страницу, которая сейчас не открыта и щелкните по ней. Файл откроется.

- 4. Работа спанелями.
- 4.1. В пункте меню Вид выберите пункт Панелиинструментов.

По очереди выбирайте каждый пункт появляющегося сбоку подменю и посмотрите, как при этом будет меняться вид панели инструментовбраузера.

- 4.2. В пункте меню Вид выберите пункт Строка состояния и щелкните по нему. Строка состояния (под окном браузера) должна исчезнуть, если пункт Строка состояния был отмечен галочкой, или появиться, если он не был отмечен. В итоге строка состояния должна быть включена.
- 4.3. В пункте меню Вид установите курсор на пункт Панели обозревателя и щелкните по пункту Избранное появившегося сбоку контекстного меню. Рядом с окном браузера должна появиться панель со списком папок и файлов ИЗБРАННОЕ Попробуйте запустить несколько файлов из ИЗБРАННОГО Затем закройте панель Избранное, щелкнув по значку X в правом верхнем углупанели.
- 4.4. В пункте меню Вид установите курсор на пункт Панель обозревателя и щелкните по пункту Журнал появившегося сбоку контекстного меню. На появившейся панели будет список файлов, с которыми браузер работал ранее. Попробуйте открыть несколько файлов. Затем закройте панель Журнал, щелкнув по значку X в правом верхнем углупанели.
 - 5. Перенесение гиперссылок на панельСсылки.
- 5.1. Убедитесь в том, что в браузере присутствует панель Ссылки (под строкой Адрес). Если она отключена, включите ее (меню Вид\Панелиинструментов\Ссылки)
 - 5.2. Установите курсор на гиперссылкуwww.rambler.ru.
- 5.3. Нажмите левую кнопку мыши и, не отпуская ее, переведите курсор на панель Ссылки. Отпуститекнопку.
- 5.4. Щелкните по надписи www.rambler.ru на панели Ссылки. Компьютер свяжется с Интернет-узлом<u>www.rambler.ru</u>.
 - 5.5. Вернитесь в предыдущее состояние с помощью кнопкиНазад.
 - 6. Удаление записей с панелиСсылки.

Щелкните правой кнопкой мыши по надписи www.rambler.ru на панели Ссылки. Из появившегося контекстного меню выберите функцию Удалить и щелкните по ней. Надпись www.rambler.ru исчезнет с панели Ссылки.

Задание 3. Самостоятельная работа с браузером MS Internet Explorer.

Отработать следующие вопросы:

1) Как упростить ввод данных вИнтернете.

С помощью функции Автозаполнение можно сохранять сведения, ранее введенные в поля Web-адресов, форм и паролей. Затем при вводе информации в одно из таких полей Автозаполнение подставляет строку из ранее введенных сведений. Эти строки могут включать в себя названия папок и программ, внесенных когда-либо в адресную строку, а также запросы поиска, набор фраз или данных для заполнения практически любого поля Web-страницы.

1. Начните ввод данных в адресную строку, поле Web-страницы или поле для ввода пароля или именипользователя.

По мере ввода информации функция Автозаполнение создает список со строками, соответствующими вводимым данным.

2. Если в списке есть вариант, который необходимо ввести в данное поле, выберитеего.

Если подходящего варианта нет, продолжайте заполнять поле.

2) Как настроить Автозаполнение.

Пользователь может таким образом настроить Автозаполнение, что оно будет сохранять и подставлять данные только для указанных пользователем групп полей. Можно

выбрать Автозаполнение для Web-адресов, форм и паролей или не использовать его совсем. Кроме того, для любой их этих групп можно удалить запомненные сведения.

- 1. В InternetExplorer в меню Сервис выберите Свойстваобозревателя.
- 2. Выберите вкладкуСодержание.
- 3. В поле Личные данные нажмите кнопку Автозаполнение.
- 4. Установив соответствующие флажки, выберите необходимые возможности функции Автозаполнение.
 - 3) Как сохранить Web-страницу накомпьютере.
 - 1. В меню Файл выберите Сохранитькак.
 - 2. Дважды щелкните папку, в которую хотите поместитьстраницу.
 - 3. В поле Имя файла введите соответствующееимя.
 - 4. В поле Тип файла выберите типфайла.

Чтобы сохранить все файлы, необходимые для отображения данной страницы, включая рисунки, кадры и таблицы стилей, выберите вариант Web-страница, полностью. В этом случае сохранятся все файлы в соответствующих форматах.

Чтобы сохранить всю информацию, необходимую для отображения данной страницы, в виде одного файла в кодировке МІМЕ, выберите вариант Web-архив. Выбор этого типа файла приведет к сохранению всей активной Web-страницы.

Чтобы сохранить только активную HTML-страницу, выберите Web-страница, только HTML. Выбор этого типа файла приведет к сохранению информации, содержащейся на вебстранице, но при этом не сохранятся рисунки, звуковые эффекты и прочие файлы.

Чтобы сохранить только текст, содержащийся на активной Web-странице, выберите Только текст. Выбор этого типа файла приведет к сохранению информации, содержащейся на веб-странице, в обычном текстовом формате.

4) Как просматривать Web-страницы без соединения сИнтернетом.

Выделив избранные страницы для просмотра в автономном режиме, можно просмотреть их следующим образом.

- 1. Перед тем, как завершить связь с Интернетом, в меню Сервис выберите пункт Синхронизировать.
- 2. Чтобы приступить к работе в автономном режиме, в меню Файл выберите пункт Работать автономно.
 - 3. В списке «Избранное» выберите страницу, которую вы хотитепросмотреть. Примечание:
- Если выбран режим автономной работы, то InternetExplorer будет запускаться в этом режиме до тех пор, пока вы не снимете метку Работатьавтономно.
 - 5) Как выбрать языковую кодировку для Web-страницы:
- В меню Вид, выберите пункт Кодировка, затем Дополнительно и выберите соответствующийязык.

Если появится запрос на загрузку компонентов языковой поддержки, выберите Загрузить.

- 6) Как ускоритьпоиск.
- В Интернете можно найти любую информацию: Web-страницы, адреса электронной почты, компании, карты и прочие сведения. Просто выберите нужную категорию, и обозреватель запросит сведения, необходимые для поиска в данной категории:
 - 1. На панели инструментов выберитеПоиск.
 - 2. Выберите видпоиска.

3. Введите сведения, по которым необходимо провести поиск, и нажмите кнопку Поиск.

Количество и тип выведенных на экран полей зависит от категории, в которой проводится поиск.

Как искать недавно просмотренные страницы.

Существует несколько способов поиска Web-узлов и страниц, просмотренных за последние дни, часы или минуты.

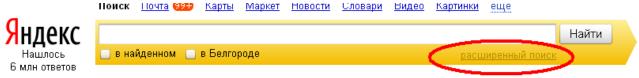
- 7) Как найти страницы, просмотренные за последние несколькодней:
- 1. На панели инструментов нажмите кнопкуЖурнал.

Появится панель «Журнал», содержащая ссылки на веб-узлы и страницы, просмотренные за последние дни и недели.

2. Чтобы просмотреть веб-страницу, выберите на панели «Журнал» неделю или день, раскройте папку веб-узла с отдельными страницами, а затем щелкните значок страницы.

Чтобы выполнить сортировку или поиск содержимого панели «Журнал», нажмите стрелку рядом с кнопкой Вид в верхней части панели.

Поиск информации в Internet


Задание 4. Выполните поиск согласно нижеследующим заданиям, для этого выполняйте следующие действия.

- 1. Создайте в своей папке из раздела «Избранное» папку Поисковые системы.
- 2. Занесите в эту папку адреса следующих поисковых систем: русскоязычные Yandex, Rambler, Google; англоязычные Yahoo, Alta Vista.
- 3. С помощью поисковой системы YANDEX –найдите в Интернете информацию о поисковых системах и их сравнительныехарактеристики.
- 4. В результате выполнения этого задания должна быть составлена и помещена в отчет следующая таблица: (В таблицу включить не менее 5 крупных каталогов).

№	Название поис- ковой систе- мы	URL	Город где расположен сервер	Общее коли-чество индексированных страниц (уникальных докумен-тов)	Количество страниц или байт индексируемых в день, неделю или месяц	Кол-во запросов день	Стои- мость рекламы
1	Яndex	www. yandex. ru	ГСП-1, 117333, Россия, Москва, ул. Вавилова, дом 40	94 605 282	5 марта 2002 г Яндекс проиндексировал 1 Тб (2 ⁴⁰ байт) информации	15,077,824	На первой странице www.yan dex.ru \$40 000 в неделю

- 5. Найдите и поместите в отчет (для каждого пункта не более однойстраницы):
 - а) сведения о погоде на ближайшие 3 дня в городе (выбрать изтаблицы).
 - b) характеристику Русскогомузея
 - с) текст любого произведения автора изтаблицы
 - d) тур для путешествия в страну из таблицы (найдите стоимость путевоки дополнительных услуг для путешествия виюне).

При этом используйте расширенный поиск:

Сохраните файл отчета. Имя файла – ваша фамилия.

Таблица. Задания для поиска информации

$N_{\underline{0}}$	Автор	Город	Стран
вар-	_		a
1	В.Шекспир	Seattle	Великобритания
2	Р.Киплинг	Madison	США
3	Ф.Достоевский	Baltimore	Корея
4	М.Горький	Washington	Китай
5	М.Шолохов	New York	Франция
6	Л.Толстой	San Francisco	Италия
7	М.Булгаков	Los Angeles	Румыния
8	Н.Гоголь	Calgary	Испания
9	И.Гончаров	Edmonton	Финляндия
10	А.Дюма	Miami	Швеция
11	Э.По	Dallas	Канада
12	М.Рид	Chicago	Мексика
13	О'Генри	Boston	Аргентина
14	Ж.Верн	Kansas City	Вьетнам
15	Д.Лондон	Oklahoma City	Сингапур

Содержание отчета

- 1. Цель
- 2. Настройкабраузера
- 3. Поиск информации вИнтернет
- 4. Выводы

Контрольные вопросы

- 1. Что такоеИнтернет?
- 2. Что такое браузер?
- 3. Назовите основные элементы окна.
- 4. Охарактеризуйте свойства браузера.
- 5. Назовите способы подключения к Интернету.
- 6. Поисковые катологи и индексные поисковыесистемы.
- 7. Перечислите виды информационно-поисковыхсистем.
- 8. Язык запросов для поисковыхсистем.
- 9. Охарактеризуйте каждый прием поиска информации: простой; расширенный; контекстный; специальный
- 10. Охарактеризуйте службы Интернет: терминальный режим; списки-рассылки;служба телеконференций; служба имен доменов (DNS);служба передачифайлов.
- 11. Понятие облачного сервиса. Преимущества инедостатки.