Департамент внутренней и кадровой политики Белгородской области Областное государственное автономное профессиональное образовательное учреждение «Белгородский индустриальный колледж»

КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ EH.01 Математика

по специальности 27.02.05 Системы и средства диспетчерского управления Комплект контрольно-оценочных средств по учебной дисциплине ЕН.01 Математика разработан на основе Федерального государственного образовательного стандарта среднего профессионального образования по специальности (далее СПО) 27.02.05 Системы и средства диспетчерского управления, утвержденного приказом Министерства образования и науки Российской Федерации №449 от 07.05.2014г.

Рассмотрено Утверждаю Согласовано цикловой комиссией Зам. директора по УМР Зам. директора по УР Протокол заседания № 1 от «31» августа 2020г. /Бакалова Е.Е. /Выручаева Н.В. Председатель цикловой комиссии «31» августа 2020 г. «31» августа 2020 г. /Чобану Л.А./ Рассмотрено цикловой комиссией Протокол заседания № 1 от « » августа 2021 г. Председатель цикловой комиссии Рассмотрено цикловой комиссией Протокол заседания № 1 от «___» <u>августа</u> 2022 г Председатель цикловой комиссии Рассмотрено цикловой комиссией Протокол заседания № 1 от «___» <u>августа</u> 2023 г Председатель цикловой комиссии

Организация-разработчик: ОГАПОУ «Белгородский индустриальный колледж»

Составитель:

преподаватель ОГАПОУ «Белгородский индустриальный колледж», Спицына О.С.

Экспертиза:

(внутренний рецентзент) ОГАПОУ «Белгородский индустриальный колледж», Сапожникова Г.В.

СОДЕРЖАНИЕ

		стр
1.	Паспорт комплекта контрольно-оценочных средств	4
2.	Результаты освоения учебной дисциплины, подлежащие проверке	6
3.	Оценка освоения учебной дисциплины	8
3.1	. Формы и методы оценивания	8
3.2	2. Типовые задания для оценки освоения учебной дисциплины	13

1. Паспорт комплекта контрольно-оценочных средств

- В результате освоения учебной дисциплины ЕН.01 Математика обучающийся должен обладать предусмотренными ФГОС по специальности СПО 27.02.05 Системы и средства диспетчерского управления следующими умениями, знаниями, которые формируют профессиональную компетенцию, и общими компетенциями:
- У1. Применять математические методы для решения профессиональных задач.
- У2. Использовать приемы и методы математического синтеза и анализа в различных профессиональных ситуациях.
- 31. Основные понятия и методы математического синтеза и анализа, дискретной математики, теории вероятностей и математической статистики.
- OK 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес
- ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- OK 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- ОК 6. Работать в коллективе и команде, эффективно общаться с коллегами, руководством, потребителями.
- ПК 1.1. Принимать схемотехнические решения в процессе эксплуатации специализированных изделий и систем телекоммуникаций и информационных технологий, их устройств.
- ПК 1.2. Обеспечивать выполнение различных видов монтажа.
- ПК 1.3. Осуществлять контроль выполненных монтажных работ.
- ПК 2.1. Разрабатывать несложные проекты и схемы, обеспечивая их соответствие техническим заданиям, действующим стандартам и нормативным документам.
- ПК 2.2. Подготавливать к работе компьютерные и периферийные устройства, используемые для записи, хранения, передачи и обработки различной информации, устанавливать носители информации, обеспечивать их хранение.
- ПК 2.3. Принимать участие в разработке программ, инструкций и другой технической документации, в испытаниях и экспериментальных работах.
- ПК 2.4. Участвовать в принятии решения о конфигурации (или конфигурировании) аппаратных средств, их установке, модернизации, использовании соответствующего программного обеспечения
- ПК 3.1. Контролировать и анализировать функционирование параметров систем и средств телекоммуникаций в процессе эксплуатации.
- ПК 3.2. Снимать и анализировать показания измерительных приборов.
- ПК 3.3. Контролировать работу персональных компьютеров и периферийных устройств, используемых для записи, хранения, передачи и обработки различной информации.
- ПК 3.4. Принимать оптимальные решения по созданию информационных систем и сетей на основе информационных потребностей пользователей.
- ПК 4.1. Диагностировать электронное оборудование и системы телекоммуникаций диспетчерского управления.

- ПК 4.2. Осуществлять техническое обслуживание и ремонт электронного оборудования и систем телекоммуникаций диспетчерского управления.
- ПК 4.3. Обеспечивать тестовую проверку, профилактический осмотр, регулировку, техническое обслуживание и небольшой ремонт компьютерных и периферийных устройств.

Формой аттестации по учебной дисциплине является дифференцированный зачет.

2. Результаты освоения учебной дисциплины, подлежащие проверке

2.1. В результате аттестации по учебной дисциплине осуществляется комплексная проверка следующих умений и знаний, а также динамика формирования общих компетенций:

Таблица 1.1

Результаты обучения: умения, знания и общие компетенции	Показатели оценки результата	Форма контроля и оценивания
Уметь:		
	-вычисление производной; -вычисление определенного интеграла, приложения в геометрии;	оценка результатов выполнения практических работ тестовый контроль; устная проверка;
У2. Использовать приемы и методы математического синтеза и анализа в различных профессиональных ситуациях ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность. ОК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности. ОК 6. Работать в коллективе и команде, эффективно общаться с коллегами, руководством, потребителями Знать		тестовый контроль; устная проверка;
31. Основные понятия и методы математического синтеза и анализа, дискретной математики, теории вероятностей и математической статистики	 –вычисление определителей п-го порядка; –выполнение действий над комплексными числами в разных формах; –определение предела числовой последовательности; –определение производной; 	

-определение определенного	
интеграла, приложения в	
геометрии;	
-определение обыкновенного	
дифференциального уравнения,	
уравнения с разделяющимися	
переменными, линейные	
однородные уравнения	

3. Оценка освоения учебной дисциплины:

3.1. Формы и методы оценивания

Предметом оценки служат умения и знания, предусмотренные ФГОС по дисциплине EH.01 Математика, направленные на формирование общих и профессиональных компетенций.

	Формы и методы контроля					
Элемент учебной	Текущий контроль		Рубежный контроль		Промежуточная аттестация	
дисциплины	Форма контроля	Проверяемые ОК, У, 3	Форма контроля	Проверяемые ОК, У, 3	Форма контроля	Проверяемые ОК, У, 3
Раздел 1 Определители и системы линейных уравнений			Самостоятельная работа	У1, У2, 31, ОК 3, ОК 5, ОК 6	Дифференцированный зачет	У1, У2, 31, ОК 3, ОК 5, ОК 6
Тема 1.2 Определители третьего порядка. Свойства определителя третьего порядка	Проверонная работа	У1, У2, 31, ОК 3, ОК 5, ОК 6				
Тема 1.4 Операции над матрицами. Нахождение обратной матрицы	Практическая работа №1	У1, У2, З1, ОК 3, ОК 5, ОК 6				
Тема 1.5 Системы линейных уравнений		У1, У2, 31, ОК 3, ОК 5, ОК 6				
Раздел 2 Основы теории комплексных чисел	-		Самостоятельная работа	У1, У2, 31, ОК 3, ОК 5, ОК 6	Дифференцированный зачет	У1, У2, 31, ОК 3, ОК 5, ОК 6

модуль, аргумент	Тестирование	У1, У2, 31, ОК 3, ОК 5, ОК 6				
Раздел 3. Теория пределов			Самостоятельная работа	NJK 5. UK 5.	дифференцированный	У1, У2, 31, ОК 3, ОК 5, ОК 6
пределы.	Устный опрос Тестирование Практическая работа №4					
Тема 3.3 Вычисление пределов с помощью замечательных	Тестирование Практическая работа №5					

Раздел 4 Дифференциальное исчисление		і амостоятені ная	У1, У2, 31, ОК 3, ОК 5, ОК 6	дифференцированный	У1, У2, 31, ОК 3, ОК 5, ОК 6
COMPLICATION	Устный опрос Практическая работа №6				
Тема 4.2 Применение	Устный опрос Практическая работа №7				
Раздел 5. Интегральное исчисление		I AMOGTOGTA III IIAA	У1, У2, 31, ОК 3, ОК 5, ОК 6	дифференцированный	У1, У2, З1, ОК 3, ОК 5, ОК 6
Тема 5.2 Методы интегрирования (непосредственное интегрирование, введение новой переменной, интегрирование по частям)	Устный опрос Практическая работа №8				
1	Устный опрос Практическая работа №9				

r	,		1	T	
Тема 5.5					
Решение					
прикладных задач с	Устный опрос				
помощью	Проверочная работа				
определенного					
интеграла					
Раздел 6.			У1, У2, З1,		У1, У2, З1,
Обыкновенные			OK 3, OK 5,	Дифференцированный	OK 3, OK 5,
дифференциальные		MANATA .	OK 5, OK 5, OK 6	зачет	OK 5, OK 5, OK 6
уравнения			OK 0		OK 0
Тема 6.2					
	Устный опрос				
	Практическая работа №9				
уравнений					
Раздел 7.					
Элементы теории			У1, У2, З1,	Дифференцированный	У1, У2, З1,
вероятностей и			OK 3, OK 3,	DALLET	OK 3, OK 5,
математической			ОК 6		ОК 6
статистики					
Тема 7.1					
События и их					
классификация.					
Классическое и	Устный опрос				
статистическое	Гестирование				
определения					
вероятности					
случайного события					
Тема 7.3	Устный опрос				
Формула полнои	Самостоятельная работа				
вероятности	1				

3.2. Типовые задания для оценки освоения учебной дисциплины 3.2.1. Типовые задания для оценки знаний 31 умений У1, У2

1) Задания для устного опроса

Перечень вопросов по теме 1.5 «Системы линейных уравнений»

- 1. Что такое СЛАУ?
- 2. Какие вы знаете способы вычисления СЛАУ?
- 3. В чем состоит суть решения СЛАУ методом Крамера?
- 4. Всякую ли систему можно решить методом Крамера?
- 5. В чем заключается универсальность метода Гаусса?
- 6. Расскажите этапы решения СЛАУ матричным методом?
- 7. Почему матричным методом можно решить не всякую СЛАУ?
- 8. Если решая систему линейных уравнений методом Гаусса, последняя строка получилась нулевая, о чем это говорит?
- 9. Если решая СЛАУ матричным методом, определитель оси матрицы получился=0, то однозначно можно сказать, что...
- 10. Формула для решения СЛАУ матричным методом имеет вид:

Перечень вопросов по теме 2.1 «Комплексные числа. Действительная и мнимая часть, модуль, аргумент комплексного числа. Арифметические действия над комплексными числами».

- 1. Назовите 3 формы представления комплексных чисел.
- 2. Что такое аргумент комплексного числа.
- 3. Что такое модуль комплексного числа?
- 4. Как геометрически изобразить на комплексной плоскости число z=-2+6i?
- 5. Какие комплексные числа называются сопряженными? Противоположными?
- 6. Какие действия можно выполнить над комплексными числами в алгебраической форме?
- 7. и в показательной и тригонометрической форме
- 8. Как выполняется комплексное число в общем виде, показательном, тригонометрическом, и алгебраической форме.
- 9. Как перевести число из алгебраической формы в тригонометрическую?
- 10. Как выглядит в тригометрической и показательной форме число 2=-2i?

Перечень вопросов по теме 3.2 «Раскрытие неопределенностей вида 0/0 и

— Замечательные пределы. Вычисление пределов функций. Два замечательных предела. Вычисление числа е»

- 1. Что такое Предел числовой последовательности?
- 2. Перечислите свойства предела числовой последовательности.
- 3. Какие последовательности называются расходящимися и сходящимися?
- 4. Какая последовательность называется бесконечно большой? Бесконечно малой?

- 5. Чему равен предел бесконечно большой последовательности? Бесконечно малой?
- 6. Понятие предела функции в точке.
- 7. Свойства пределов функции в точке. Предел константы?
- 8. Правило вычисления пределов. Неопределённости.
- 9. Первый и второй замечательные пределы (формулы, следствия)

Перечень вопросов по темам 4.1-4.2 «Определение производной. Правила вычисления. Дифференциал функции. Производная сложной функции.»

- 1. Что такое производная функции?
- 2. Назовите физический и геометрический смысл производной.
- 3. Вторая производная? Определение производной высшего порядка.
- 4. Производная сложной функции. Примеры.
- 5. Физический смысл второй производной.
- 6. Понятие дифференциала. Дифференциалы высших порядков.
- 7. Применение производной для исследования функций.
- 8. Какие точки функции называются критическими? Алгоритм исследования функции на монотонность.
- 9. Какие точки функции называются экстремальными? Сформируйте необходимое и достаточное условия существования экстремума функции в точке.
- 10. Этапы исследования функции на экстремум с помощью первой и второй производной.
- 11. Функция называется выпуклой вниз если ...

Функция называется выпуклой вверх если...

- 12. Точкой перегиба называется точка ...
- 13. Сформулируйте признаки выпуклости функции на интервале.
- 14. Сформулируйте этапы исследования функции на выпуклость и перегиб.

Перечень вопросов по темам 5.2, 5.4, 5.5 «Методы интегрирования (непосредственное интегрирование, введение новой переменной, интегрирование по частям). Определенный интеграл. Методы вычисления определенного интеграла. Решение прикладных задач с помощью определенного интеграла»

- 1. Что такое первообразная? Сколько первообразных может иметь функция?
- 2. Что такое неопределенный интеграл? Свойства неопределённого интеграла.
- 3. Перечислить известные вам методы интегрирования.
- 4. В чем заключается суть метода интегрирования заменой переменных?
- 5. В чем заключается суть метода интегрирования по частям?
- 6. Какие вам известны приёмы, необходимые при интегрировании рациональных и иррациональных функций?
- 7. Что такое определенный интеграл? Свойства определенного интеграла.
- 8. Геометрический смысл определенного интеграла.
- 9. Методы интегрирования определенных интегралов.

10. Применение определенного интеграла к решению геометрических задач и задач из области функций.

Перечень вопросов по теме 6.2 «Решение дифференциальных уравнений»

- 1. Какие уравнения называются дифференциальными?
- 2. Метод решения дифференциальных уравнений с разделяющимися переменными.
- 3. Какие виды решений возможны при решении ДУ с разделяющимися переменными?
- 4. Частное решение ДУ
- 5. Общее решения ДУ
- 6. Какие дифференциальные уравнения называются однородными.
- 7. Принцип решения однородных дифференциальных уравнений.

2) Задания в тестовой форме

Тестирование по теме 1.2 «Определители третьего порядка. Свойства определителя третьего порядка»

- 1. Изменится ли значение определителя, если заменить его строки столбцами с теми же номерами?
- 1) Изменится
- 2) Не изменится
- 3) Будет равной 0
- 4) Будет равной -1
 - 2. При перестановке 2-х строк (столбцов) знак определителя:
- 1) Не меняется
- 2) Будет противоположным
- 3) Подобная перестановка невозможна
- 4) Возможны все варианты ответов
 - 3. Если одна из строк определителя нулевая, то значение определителя равно?
- 1) 1
- 2) -1
- 3) 0
- 4) Среди представленных, нет верного варианта
 - 4. Можно ли выносить общий множитель элементов строк (столбцов) за знак определителя?
- Да
- Нет
- 3) Да, только если он положительный
- 4) Да, только если он отрицательный
 - 5. Определитель-это
- 1) число
- вектор
- 3) прямоугольная таблица чисел
- 4) неопределяемое понятие
 - 6. Определитель числа 2 равен

- 1) 0
- 2) 1
- 3) 2
- 4) бесконечности

7. Определитель второго порядка равен $\begin{vmatrix} -4 & -1 \\ 2 & 9 \end{vmatrix}$

- 1) -38
- 2) 40
- 3) -34
- 4) 34

8. Определитель
$$\begin{vmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{vmatrix}$$
 равен

- 1) 3
- 2) 6
- 3) 0
- 4) -1

9. Минором элемента определителя 3-го порядка M_{ij}

- 1) Называется определитель 2-го порядка, получающийся из данного определителя вычеркиванием і-строки и ј-столбца, на пересечении которых, стоит этот элемент.
- 2) Называется определитель n-го порядка, получающийся из данного определителя вычеркиванием строки и столбца, на пересечении которых стоит этот элемент.
- 3) Называется определитель 2-го порядка, получающийся из данного определителя вычеркиванием јстроки и істолбца, на пересечении которых, стоит этот элемент.
- 4) Все утверждения неверны

10.Алгебраическое дополнение элемента определителя вычисляется по формуле

- 1) $A_{ij} = (-1)^{i+j} M_{ij}$
- 2) $A_{ij} = (-1)^{i+j} M_{ji}$
- 3) $A_{ij} = (-1)^{-i+j} M_{ij}$
- 4) Нет верной формулы

Ключ к тестированию:

N₂	Вариант
вопроса	ответа
1.	2
2.	2
3.	3
4.	1
5.	1
6.	3

7.	3
8.	2
9.	1
10.	1

Тестирование по теме 1.4 «Операции над матрицами. Нахождение обратной матрицы»

1. Транспонирование матрицы это

- 1) замена диагональных элементов нулями;
- 2) перестановка местами двух строк (столбцов);
- 3) замена знаков столбцов на противоположные
- 4) замена строк соответствующими столбцами
- 5) замена знаков столбцов на противоположные;

2. Результатом сложения двух матриц есть

- 1) матрица того же порядка и размера
- 2) числовое значение;
- 3) матрица большего размера
- 4) диагональная матрица;

3. Какую матрицу можно возвести в квадрат?

- 1) прямоугольную;
- 2) нулевую;
- 3) квадратную
- 4) абсолютно любую

4. Разность двух матриц A и B
$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -3 & -2 \\ 2 & 1 & 0 \end{pmatrix}$$
 $B = \begin{pmatrix} 3 & 2 & -5 \\ 11 & 6 & 0 \\ 2 & 1 & 9 \end{pmatrix}$

будет равна:

$$\begin{pmatrix}
-2 & 0 & 8 \\
-12 & -9 & -2 \\
0 & 0 & 9
\end{pmatrix}$$

$$\begin{pmatrix}
-2 & 0 & 8 \\
12 & -9 & -2 \\
0 & 0 & 9
\end{pmatrix}$$

$$\begin{pmatrix}
-2 & 0 & 8 \\
-12 & -8 & -2 \\
0 & 0 & 9
\end{pmatrix}$$

5. Минором M_{ij} : какого-либо элемента a_{ij} определителя называется:

- 1) Определитель, полученный из данного вычёркиванием ј столбца
- 2) Определитель, полученный из данного вычёркиванием і строки
- 3) Определитель, полученный из данного вычёркиванием і строки и ј столбца
- 4) Определитель, содержащий две одинаковые строки (столбца)

6. Если матрица А имеет обратную, то

- 1) Определитель, составленный из её элементов =0
- 2) Определитель, составленный из её элементов не равен 0
- 3) Обратная не обязательно является единственной для матрицы А
- 4) Матрица А является вырожденной

7. В каком случае вводится умножение матриц?

- 1) когда число строк первой матрицы равно числу строк второй матрицы
- 2) когда число столбцов первой матрицы равно числу столбцов второй матрицы
- 3) когда число столбцов первой матрицы равно числу строк второй матрицы
- 4) перемножать можно любые матрицы

8. Перечислите этапы нахождения обратной матрицы

- 1) Вычисляем определитель матрицы, составляем новую матрицу из алгебраических дополнений элементов прежней
- Вычисляем определитель матрицы, если он не равен 0, то составляем 2) новую матрицу из алгебраических дополнений элементов прежней
- Вычисляем определитель матрицы, если он равен 0, то составляем 3) новую матрицу из алгебраических дополнений элементов прежней
- 4) Вычисляем определитель матрицы, если он не равен 0, то составляем новую матрицу из алгебраических дополнений элементов прежней делим каждый элемент матрицы на значение определителя

9. Что называется суммой двух матриц?

- 1) матрица, полученная сложением соответствующих элементов матриц слагаемых.
- 2) транспонированная матрица
- 3) обратимая матрица;
- 4) матрица, полученная умножением каждого элемента матрицы А на число k.;

10. Произведением двух матриц A и B
$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -3 & -2 \\ 2 & 1 & 0 \end{pmatrix}$$

$$B = \begin{pmatrix} 3 & 2 & -5 \\ 11 & 6 & 0 \\ 2 & 1 & 9 \end{pmatrix}$$

будет следующая матрица:

18

$$3. \begin{pmatrix} 31 & -17 & 21 \\ 40 & 22 & -13 \\ 17 & 10 & -10 \end{pmatrix} \qquad 4. \begin{pmatrix} 31 & 17 & 21 \\ 40 & -22 & -13 \\ 17 & -10 & -10 \end{pmatrix}$$

Ключ к тестированию:

Killo 4 K Teel hpobalinio.			
No	Вариант		
вопроса	ответа		
1.	3		
2.	1		
3.	3		
4.	3		
5.	3		
6.	2		
7.	3		
8.	4		
9.	1		
10.	2		

Тестирование по теме 1.5. «Системы линейных уравнений»

- 1. Какой из перечисленных ниже методов всегда дает ответ на вопрос имеет ли система решения и сколько?
- 1) Матричный метод
- 2) Метод Гаусса
- 3) Метод Крамера
- 4) Все методы равноправны и дают ответ.
- 2. Если определитель основной матрицы СЛУ не равен 0, то однозначно можно сказать.
- 1) Матрица имеет обратную
- 2) Система линейных уравнений имеет единственное решение
- 3) СЛУ можно решить любым методом (матричный, Крамера, Гаусса)
- 4) Все варианты верны
- 3. Система, состоящая из п-линейных уравнений и п-неизвестных,

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

может быть решена

- 1. Только матричным методом
- 2) Только методом Гаусса

- 3) Только методом Крамера
- Любым

4. Система линейных уравнений имеет множество решений, или не имеет решений в случае если

- 1) Определитель основной матрицы равен 0
- 2) Определитель расширенной матрицы равен 0
- 3) Определитель основной матрицы отличен от 0
- 4) Определитель расширенной матрицы не равно 0

5. Если при решении СЛУ методом Гаусса последняя строка например имеет вид (0 0 0 0 0 \mid -4) это означает

- 1) система линейных уравнений имеет множество решений
- 2) СЛУ не имеет решений
- 3) СЛУ имеет 1 решение
- 4) Среди представленных вариантов нет верного ответа
- 6. Система называется совместной, если она
- 1) Не имеет ни одного решения
- 2) Имеет только одно решение
- 3) Имеет множество решений
- 4) Имеет хотя бы одно решение
- 7. Формула для решения системы матричным способом имеет вид:
- 1) $X = A^{-1} \cdot B$
- $X = A \cdot B$
- 3) $X=B \cdot A^{-1}$
- 4) $X=A \cdot B^{-1}$

8. Какие из следующих преобразований СЛУ приводят к равносильной системе линейных уравнений

- 1) Перестановка уравнений
- 2) Умножение уравнения на ненулевое число
- 3) Добавление к одному уравнению другого, умноженного на любое число
- 4) Все варианты верны
 - 9. Если все свободные элементы (элементы, стоящие после знака =) нулевые, то система называется
- 1) Однородной
- 2) Несовместной
- 3) Определенной
- 4) Неопределенной
- 10. Систему из трёх линейных уравнений с тремя неизвестными можно решить

$$\begin{cases} 4x_1 + x_2 - x_3 = 1 \\ x_1 - x_2 + 3x_3 = 10 \\ -x_1 + 2x_2 + 3x_3 = 8 \end{cases}$$

- 1) Только методом Гаусса
- 2) И методом Крамера и методом Гаусса

- 3) Любым из трех способов
- 4) Только матричным методом
- Общее решение системы линейных уравнений состоящей из п 11. уравнений и m неизвестных где, m<n методом Крамера можно представить:
- $x_i = \frac{\Delta i}{\Delta}$ $x_i = \frac{\Delta}{\Delta i}$ 1)
- 2)
- 3) Такую систему нельзя решить методом Крамера т.к. число неизвестных должно быть равно числу уравнений
- 4) нет верного варианта
- 12. Суть матричного метода для решения СЛУ состоит в поиске...
- 1) Обратной матрицы, для получения общего решения
- 2) Единичной матрицы для получения решения
- 3) Нулевой матрицы
- 4) Нет верного ответа среди представленных
- 13. Для вычисления обратной матрицы необходимо:
- 1) Вычислить главный определитель, если он не равен 0 составить новую матрицу из алгебраических дополнений первой
- 2) Вычислить главный определитель, если он $\neq 0$, то составить новую матрицу из алгебраических дополнений первой, и разделить каждый элемент новой матрицы на значение определителя
- 3) Составить новую матрицу из алгебраических дополнений первой
- 4) Нет верного ответа из предложенных вариантов
- Если при вычислении СЛУ методом Гаусса последняя строка **14.** имеет вид $(0\ 0\ 0/0)$ то это означает, что
- 1) СЛУ не имеет решений
- 2) СЛУ имеет множество решений
- 3) СЛУ имеет единственные решение
- 4) СЛУ нельзя решать методом Крамера
- **15.** Систему линейных уравнений можно решить

$$\begin{cases} x_1 - x_2 - x_3 = 1 \\ 2x_1 + x_2 + -4x_3 = -3 \end{cases}$$

- 1) Только методом Гаусса
- 2) Методом Крамера
- 3) Матричным методом
- 4) Любым
- **16.** Если при решении СЛУ методом Гаусса последняя строка, после приведения матриц к треугольному виду получилась (0 0 0 5/0) это означает
- 1) Система несовместна
- 2) Система совместна
- 3) О количестве решений ничего нельзя сказать
- 4) Система является однородной
- **17.** Суть метода Гаусса при решении СЛУ заключается
- 1) В приведении основной матрицы системы к ступенчатому виду

- 2) В приведении расширенной матрицы системы к ступенчатому виду
- 3) В приведении основной матрицы системы к треугольному виду
- 4) Нет верного ответа среди предложенных вариантов
- 18. Главный определитель системы при решении ее методом Крамера равен

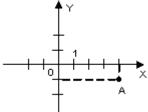
$$\begin{cases} 2x_1 - x_2 = 5 \\ -4x_2 + x_1 = 13 \end{cases}$$

- 1) 7
- 2) 7
- 3) 9
- 4) 9
- 19. Чему равно значение ду при решении системы методом Крамера

$$\begin{cases} x_1 + 7x_2 = 26 \\ 2x_2 - x_1 = -6 \end{cases}$$

- 1. 20
- 2. 4
- 3. -2
- 4. -32
- 20. Чему равно Δx при решении СЛУ методом Крамера

$$\begin{cases} x_1 + 7x_2 = 26 \\ 2x_2 - x_1 = -6 \end{cases}$$


- 1) 2
- 2) 10
- 3) -10
- 4) 4

Ключ к тестированию:

Nº	Вариант	Nº	Вариант
вопроса	ответа	вопроса	ответа
1.	2	2.	4
3.	4	4.	1
5.	1	6.	4
7.	1	8.	4
9.	1	10.	3
11.	3	12.	1
13.	2	14.	2
15.	1	16.	1
17.	2	18.	2
19.	1	20.	3

Тестирование по теме 2.1 «Комплексные числа. Действительная и мнимая часть, модуль, аргумент комплексного числа. Арифметические действия над комплексными числами»

1. Данному изображению точки А соответствует комплексное число

1)
$$z = 4 - i$$

2)
$$z = 1 + 4i$$

3)
$$z = -4 + i$$

4)
$$z = 1 + 4i$$

2. Корнем уравнения $y^2 + 2y + 10 = 0$ является число...

1)
$$-1 + 3i$$

2)
$$1+3i$$

3. Комплексное число z=1+i в тригонометрической форме имеет вид...

1)
$$\sqrt{2}(\cos 45^\circ + i \sin 45^\circ)$$

2)
$$\cos 45^{\circ} + i \sin 45^{\circ}$$

3)
$$\sqrt{2}(\cos 45^{\circ} - i \sin 45^{\circ})$$

4)
$$\sqrt{2}(\cos 30^{\circ} + i \sin 30^{\circ})$$

 $\frac{z_1}{z_2}$

4. Частное $\overline{z_2}$ комплексных чисел $z_1 = 3 + i$ и $z_2 = -1 + i$ равно ...

1)
$$-1-2i$$

2)
$$-2-2i$$

3)
$$-2-4i$$

4)
$$-3+i$$

5. Чему равен модуль комплексного числа z=17

2)
$$r=1,7$$

3)
$$r = \sqrt{17}$$

6. Как будет представлено число -4і в показательной форме

1)
$$z = 4e^{270^{\circ}i}$$

2)
$$z = -4e^{270^{\circ}i}$$

3)
$$z = 16e^{270^{\circ}i}$$

$$4) z = 4e^{0^{\circ}i}$$

5)

7. Как выглядит тригонометрическая форма комплексного числа 1) $z = r(\cos \varphi + i \sin \varphi)$ 2) $z = r(\sin \varphi - i\cos \varphi)$ 3) $z = r^2 (\sin \varphi + i \cos \varphi)$ 4) $z = \sqrt{r}(\sin \varphi + i\cos \varphi)$ 8. Какие из следующих пар чисел будут комплексно сопряжёнными 1) z=7-iz = -7 - i2) z=8-iz=i+83) z = -27 - iz = 27 - i4) z=-3-iz=3+iЧему равно значение выражения $z=\sqrt{-4}$ в области комплексных 9. чисел 1) -2i2) 2i -2i, 2i3) 4) Извлечь корень невозможно **10.** Чему равно выражение: (1+i)(1-i)? 1) 1 2) 0,5 3) 2 4) 0 Чему равняется значение выражение: i⁵ 11. $-i^5$ 1) 2) i 3) 5i 5*(1/i) 4) arphi между положительной Как называется угол 12. действительной оси Rez и радиус-вектором, проведенным из начала координат к соответствующей точке? Аргументом комплексного числа 1) 2) Условием комплексногочисла 3) Модулем комплексного числа 4) Следствием комплексногочисла Даны два комплексных числа $z_1=5+2i$, $z_2=2-5i$. Найти их сумму. **13.** 1) 7 - 3i2) 4i 3) 10-3i 3 - 7i4) **14.** Даны два комплексных числа $z_1=5+2i$, $z_2=2-5i$. Найти их разность 1) 3+7i2) 10–4i 3) 3 - 3i4) 4 + 10iДаны два комплексных числа $z_1=5+2i$, $z_2=2-5i$. Найти **15.**

произведение 10-10i

1)

- 2) -25+10i
- 3) 7 + 3i
- 4) 20-21i

16. Сколько форм записи имеет комплексное число?

- 1)
- 2) 2
- 3 3)
- 4 4)

Что представляет собой число і? 17.

- 1) Число, квадратный корень из которого равен -1
- Число, квадрат которого равен -1 2)
- Число, квадратный корень из которого равен 1 3)
- Число, квадрат которого равен 1 4)

18. Как на координатной плоскости изображается комплексное число?

- В виде отрезка 1)
- Точкой или радиус-вектором 2)
- 3) Плоской геометрической фигуры
- 4) В виде круга

Кто ввёл название «мнимые числа»? **19.**

- 1) Декарт
- 2) Арган
- 3) Эйлер
- 4) Кардано

Найдите произведение двух комплексных чисел представленных в **20.** тригонометрической форме

$$z1 = 4\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$
$$z2 = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

1)
$$z1 * z2 = 8(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12})$$

2)
$$z1 * z2 = 6(\cos\frac{\frac{12}{2\pi}}{3} + i\sin\frac{\frac{12}{2\pi}}{3})$$

3)
$$z1 * z2 = -8(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12})$$

4) $z1 * z2 = 6(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12})$

4)
$$z1 * z2 = 6(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12})$$

Ключ к тестированию:

No	Вариант	№	Вариант
вопроса	ответа	вопроса	ответа
1.	1	2.	1
3.	1	4.	1
5.	1	6.	1
7.	1	8.	2
9.	3	10.	3
11.	2	12.	1
13.	1	14.	1

15.	4	16.	3
17.	2	18.	2
19.	1	20.	1

Тестирование по теме 3.2 Раскрытие неопределенностей вида 0/0 и $\overline{\infty}$. Замечательные пределы. Вычисление пределов функций. Два замечательных предела. Вычисление числа "e"

- 1. Найти предел последовательности $\lim_{n\to\infty}\frac{1}{n}$
- 1) ∝
- 2) 0
- 3) 1
- **4**) +∝
- 2. Вычислить предел функции $\lim_{x\to 10} \frac{1}{x-10}$
- 1) ∞
- 2) 0
- 3) 10
- 4) 1
- 3. Последовательность называется бесконечно большой, если предел равен:
- 1) -1
- 2) ∞
- 3) 0
- 4) 1
- 4. Предел константы равен:
- 1) Константе
- 2) 0
- 3) Такого быть не может
- 4) 1
- 5. Какой вид неопределенности характерен для данного предела последовательности $\lim_{n \to \infty} \frac{n^2 n}{n^3 + n}$
- 1) $\frac{0}{0}$
- $2) \frac{\infty}{\infty}$
- 3) 1[∞]
- 4) В этом пределе неопределенность отсутствует
- 6. Найти значение предела

$$\lim_{x\to 5}\frac{x^2-25}{x-5}$$

- 1) 25
- 2) 10
- 3) 5
- 4) -5

7. Пределом функции может быть:

- 1) Только конечное число
- 2) Только бесконечность
- 3) И конечное число и бесконечность
- 4) Нет верного ответа

8. При вычислении предела функции и предела последовательности

- 1) Константу можно вынести за знак предела
- 2) Предел суммы функций (послед-ей) равен произведению функций (послед-ей)
- 3) Предел произведения функций (послед-ей) равен произведению пределов функций
- 4) Верны все утверждения

9.Окрестностью точки называются

- 1) Все точки, расположенные справа и слева от данной точки
- 2) Все точки, расположенные только справа
- 3) Все точки, расположенные справа и слева от заданной точки на расстоянии r, где r- радиус окрестности
- 4) Все утверждения верны

10. Окрестностью какой точки и какого радиуса является интервал (1,3)

- 1) Точки 2 радиус 1
- 2) Точки 1 радиус 2
- 3) Точки 3 радиус 1
- Точки 1 радиус 3

11. Число В называют пределом последовательности (y_n) , если

- 1) В любой заранее выбранной окрестности точки В содержатся все члены последовательности начиная с некоторого номера.
- 2) В любой заранее выбранной окрестности точки В может и не быть членов последовательности начиная с некоторого номера.
- 3) Нет верного определения.
- 4) Это число является конечным.

Ключ к тестированию:

N₂	Вариант		
вопроса	ответа		
1.	2		
2.	1		
3.	2		
4.	1		
5.	2		
6.	2		
7.	3		
8.	1		
9.	3		
10.	1		
11.	1		

Тестирование по теме 3.3 Вычисление пределов с помощью замечательных

1. Какой из перечисленных пределов будем раскрывать, используя понятие замечательного предела

$$1) \qquad \lim_{x \to 0} \frac{2x}{\sin 3x} !!!$$

$$\lim_{x \to 4} x - \sin x$$

$$\lim_{x\to 5} x^2 \cos x$$

4) ни один из представленных пределов нельзя решить с помощью замечательных

2. Первый замечательный предел отношения двух функций $\frac{sinx}{x}$ =1 при хстремящимся к

- 1) ∞
- 2) 1
- $3) + \infty$
- 4) 0

3. Второй замечательный предел в аналитическом виде имеет вид:

1)
$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e^{-\frac{1}{x}}$$

$$2) \qquad \lim_{x \to \infty} (1 - x)^{\frac{1}{x}} = e$$

3)
$$\lim_{x \to 0} (1+x)^x = e$$

4) Нет верного ответа

4. Первый замечательный предел связан с раскрытием неопределенности вида

- 1) $\frac{\infty}{\infty}$
- $\frac{0}{0}$
- $\begin{array}{ccc} 2) & 0 \\ 3) & 1^{\infty} \end{array}$
- 3) 1^{∞} 4) Het верного ответа

5. Второй замечательный предел связан с раскрытием неопределенности

- 1) $\frac{0}{0}$
- 2) 1[∞]
- 3) ∞-∞
- 4) 0 ∞

6. Найдите значение предела: $\lim_{x\to 0} (1+x)^{\frac{5}{x}}$

- 1) $e^{\frac{1}{5}}$
- 2) $e^{5}!!!$
- 3) 5

4)
$$\frac{1}{5}$$

7. Найдите значения предела $\lim_{x\to\infty} (\frac{x+6}{x})^x$

1)
$$e^{6}!!!$$

2)
$$e^{\frac{1}{6}}$$

3)
$$\frac{1}{6}$$

Найдите значение предела $\lim_{x\to 0} \frac{\sin 4x}{x}$ 8.

1)
$$\frac{4}{2}$$
 $\frac{1}{4}$

Найдите значение предела $\lim_{x\to 0} \frac{4x}{\sin 15x}$ 9.

4)
$$\frac{4}{15}$$

10. Найдите значение предела $\lim_{x\to 0} (1+9x)^{\frac{1}{3x}}$

1)
$$e^{3}$$

2)
$$e^{\frac{1}{3}}$$

4)
$$e^{1}$$

Ключ к тестированию:

No	Вариант		
вопроса	ответа		
1.	1		
2.	4		
3.	1		
4.	2		
5.	1		
6.	2		
7.	1		
8.	1		
9.	4		
10.	4		
11.	1		

3) Задания для самостоятельных работ

Самостоятельная работа по разделу 1 «Определители и системы линейных уравнений»

Вариант №1

Задание №1.

Решить систему линейных уравнений по формулам Крамера

$$2x-2y-z=0$$

$$-3y-2z=-6$$

$$x+y+z=1$$

Задание №2.

Решить систему линейных уравнений методом Гаусса

$$2x_1 + 5x_2 + 4x_3 = 20$$

$$x_1 + 3x_2 + 2x_3 = 11$$

$$2x_1 + 10x_2 + 9x_3 = 40$$

Вариант №2

Задание №1.

Решить систему линейных уравнений по формулам Крамера

$$x + 2y + 3z = 6$$

$$2x + 3y - z = 4$$

$$3x + y - 4z = 0$$

Задание №2.

Решить систему линейных уравнений методом Гаусса

$$\begin{cases} 2x_1 - x_3 = 1 \\ -x_1 + 3x_2 - 2x_3 = -1 \\ -x_1 + x_2 - 3x_3 = -1 \end{cases}$$

Самостоятельная работа по разделу 2 «Основы теории комплексных чисел»

Вариант №1

Задание №1. Даны числа z1=-4-5i и z2=5+6i.

Вычислить:

- 1. z1+z2.
- 2. z1*z2.
- 3. $\frac{z_1}{z_2}$
- 4. Z_1 .

Изобразить:

- 1. z1.
- 2. z2.
- 3. z1+z2.
- 4. $\frac{z_1}{z_2}$.

Задание №2. Следующие комплексные числа изобразить векторами и записать в тригонометрической и показательной формах: z_1 =-2i и $z_2 = 2 + \sqrt{3} + i$.

Вариант №2

Задание №1. Даны числа z1=2-і и z2=3-і.

Вычислить:

- 1. z1+z2.
- 2. z1*z2.
- $3. \ \frac{z_1}{z_2}.$
- 4. Z_1 .

Изобразить:

- 1. z1.
- 2. z2.
- 3. z1+z2.
- 4. $\frac{z_1}{z_2}$.

Задание №2. Следующие комплексные числа изобразить векторами и записать в тригонометрической и показательной формах: $z_1 = -3i$ и $z_2 = -1 + i\sqrt{3}$

Самостоятельная работа по разделу 3 «Теория пределов»

Вариант №1

Задание №1. Вычислить пределы:

1.
$$\lim_{x\to\infty} \frac{5x^3 - 7x}{1 - 2x^2}$$
;

2.
$$\lim_{x\to -2} \frac{x^2+3x+2}{x^2-x-6}$$
;

$$3. \lim_{x\to\infty}\frac{\sqrt{x^2+1}}{x+1};$$

4.
$$\lim_{x\to 2} \frac{\sqrt{4x+1}-3}{x^2+x-6}$$
;

5.
$$\lim_{x \to 2} \frac{x^3 - 6x^2 + 11x - 6}{x^3 - 7x + 6}.$$

Вариант №2

Задание №1. Вычислить пределы:

1.
$$\lim_{x\to\infty} \frac{2x-3}{x^2+2}$$
;

2.
$$\lim_{x \to 1} \frac{x^4 + 2x^2 - 3}{x^2 - 3x + 2}$$
;

3.
$$\lim_{x\to 1} \frac{\sqrt{x}-1}{x-1}$$
;

4.
$$\lim_{x\to 8} \frac{\sqrt{2x+9}-5}{x^2-6x-16}$$
;

5.
$$\lim_{x \to 0} \frac{\sqrt{1 + 2x - x^2} - 1}{2x + x^2}.$$

Самостоятельная работа по разделу 4 «Дифференциальное исчисление» Вариант №1

Задание: Исследовать функцию: $y = \frac{x^3 + 4}{x + 1}$

1) Найти точки разрыва и промежутки непрерывности.

Найти промежутки монотонности и экстремумы.

Вариант №2

Задание: Исследовать функцию: $y = \frac{x^2 + x + 1}{x - 1}$

1) Найти точки разрыва и промежутки непрерывности.

Найти промежутки монотонности и экстремумы.

Самостоятельная работа по разделу 5 «Интегральное исчисление»

Вариант №1

Задание №1: Найти интегралы, содержащие квадратный трехчлен.

1.
$$\int \frac{4xdx}{x^2 - 2x - 3}$$
;

$$2. \int \frac{(x+1)dx}{\sqrt{2+2x+x^2}}.$$

Задание №2: Найти интеграл, используя интегрирование по частям.

1.
$$\int 4x \cos 2x dx$$
;

$$2. \int x \ln^2 x dx.$$

Вариант №2

Задание №1: Найти интегралы, содержащие квадратный трехчлен.

1.
$$\int \frac{(5x-5)dx}{x^2-3x-4}$$
;

2.
$$\int \frac{(x+2)dx}{\sqrt{-1+2x+x^2}}$$
.

Задание №2: Найти интеграл, используя интегрирование по частям.

1.
$$\int x^2 \cos x dx;$$

$$2. \quad \int 2x^3 e^{-x^2} dx.$$

Самостоятельная работа по разделу 6 «Обыкновенные дифференциальные уравнения»

Вариант №1

Задание №1: Найти общее и частное решения следующих дифференциальных уравнений.

1.
$$x^2 y dx - y^2 x dy = 0$$
, если $y = 2$ при $x = 3$.

2.
$$(x+3)ydy - (y-3)xdx = 0$$
, если $y = 1$ при $x = 1$.

3.
$$(y-1)dx-(x-1)dy=0$$
, если $y=1$ при $x=1$.

4.
$$(x^2-4)ydy+(y^2-4)xdx=0$$
, если $y=1$ при $x=1$.

5.
$$\frac{dx}{\sqrt{y}} - \frac{xdy}{\sqrt[3]{y}} = 0$$
, ecnu $y = 1$ npu $x = 1$.

Вариант №2

Задание №1: Найти общее и частное решения следующих дифференциальных уравнений.

- 1. $x^4ydx + y^2xdy = 0$, если y = 2 при x = 2.
- 2. (x+5)ydy + (y+3)xdx = 0, если y = 1 при x = 1.
- 3. $y^2 dx x^5 dy = 0$, если y = 1 при x = 2.
- 4. $(x^2-3)ydy-(y^2-3)xdx=0$, если y=2 при x=2.
- 5. $\frac{y^3 dx}{\sqrt[3]{x}} + \frac{x dy}{\sqrt[3]{y}} = 0$, $ecnu \ y = 1 \ npu \ x = 1$.

4) Задания для дифференцированного зачета

Контрольная работа Вариант №1

Задание №1.

Решить систему линейных уравнений по формулам Крамера

$$\begin{vmatrix}
 x - 2y - z = 3 \\
 2x + 4y + 2z = 5 \\
 3x + 6y + 3z = 9
 \end{vmatrix}$$

Задание №2. Следующие комплексные числа изобразить векторами и записать в тригонометрической и показательной формах: $z_1 = 5$ и $z_2 = -\sqrt{3} + i$.

Задание №3.Вычислить предел: $\lim_{x\to -2} \frac{x^2 + 3x + 2}{x^2 - x - 6}$.

Задание №4. Вычислить производные:

1.
$$y = \frac{x^2 + 1}{x^3 - x}$$
;

2.
$$y = 3x^7 - \frac{x^3}{5} + 6$$
;

3.
$$y = (x+1)x^3$$
.

Задание №5. Вычислить площади фигур, ограниченных графиками функций. Изобразить полученные фигуры.

1.
$$y = -x^2 + 1$$
, $y = -x + 1$, $y = -x - 1$.

Контрольная работа Вариант №2

Задание №1.

Решить систему линейных уравнений по формулам Крамера

$$2x_1 + 2x_2 - x_3 = 4$$

$$4x_1 + 3x_2 - x_3 = 6$$

$$8x_1 + 5x_2 - 3x_3 = 12$$

Задание №2. Следующие комплексные числа изобразить векторами и записать в тригонометрической и показательной формах: $z = 1 + i\sqrt{3}$ и $z_1 = i$.

33

Задание №3. Вычислить предел: $\lim_{x\to\infty} \frac{5x^3-7x}{1-2x^2}$.

Задание №4. Вычислить производные:

1.
$$y = \frac{4x^2 + x}{3x^3}$$
;

$$2. y = 3\sin x + 6tgx;$$

3.
$$y = (x^2 + x)x^3$$
.

Задание №5. Вычислить площади фигур, ограниченных графиками функций. Изобразить полученные фигуры.

1.
$$y = x^2, y = -x + 2.$$

РЕЦЕНЗИЯ

на контрольно-оценочные средства по дисциплине EH.01 Математика для специальности

27.02.05 Системы и средства диспетчерского управления

Контрольно-оценочные средства по дисциплине ЕН.01 Математика разработаны Спицыной Ольгой Сергеевной, преподавателем первой квалификационной категории ОГАПОУ «Белгородский индустриальный колледж» для обеспечения требований Федерального государственного образовательного стандарта среднего профессионального образования (ФГОС СПО) к минимуму содержания и подготовки обучающихся по специальности 27.02.05 Системы и средства диспетчерского управления.

Комплект контрольно-оценочных средств включает в себя следующие элементы:

Паспорт контрольно-оценочных средств по дисциплине.

Фонд оценочных средств.

Контрольно-оценочные материалы для дифференцированного зачета.

Контрольно-оценочные средства (КОС) предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины ЕН.01 Математика.

КОС включают методические рекомендации по выполнению практических работ, тестовые и практические задания к проведению промежуточной аттестации по дисциплине, практические задания к дифференцированному зачету.

КОС разработаны на основании положений:

программы подготовки специалистов среднего звена по направлению подготовки специальности СПО 15.02.09 27.02.05 Системы и средства диспетчерского управления;

программы учебной дисциплины ЕН.01 Математика.

В соответствии с ФГОС СПО КОС является составной частью нормативнометодического обеспечения системы оценки качества освоения обучающимися KOC СПО. Паспорт имеет содержательные связи профессиональных компетенций с их компонентами (знаниями, умениями, элементами практического опыта). В паспорте определены виды аттестации для оценки результатов подготовки по дисциплине и формы контроля и оценивания. дифференцированного Контрольно-оценочные материалы ДЛЯ представленные в КОС, предназначены для контроля и оценки результатов освоения всей дисциплины. При помощи фонда оценочных средств осуществляется контроль и управление процессом приобретения обучающимися необходимых знаний, умений, практического опыта и компетенций, определенных ФГОС СПО по специальности 27.02.05 Системы и средства диспетчерского управления.

Контрольно- измерительные материалы соответствуют обязательному минимуму содержания ФГОС СПО по специальности 27.02.05 Системы и средства диспетчерского управления, дают возможность определить освоение обучающимися дисциплины. Комплект контрольно-оценочных средств по дисциплине ЕН.01 Математика может успешно использоваться преподавателями и руководителями методических служб образовательного учреждения среднего профессионального образования в рамках базовой подготовки для реализации ФГОС СПО.

Рецензент: Сапожникова Га	лина Васильевна,	преподаватель	высшей	категории				
ОГАПОУ «Белгородский индустриальный колледж»								
/Сапожнико	рва Γ̂.В./		«30» авгу	ста 2019г.				